دنیای ریاضی

دنیای ریاضی

مهدی

معدن زندگی

شهر شلوغ بود . دایره ها مشغول رفت و امد بودند . هر کدام به نوبه خود مشغول کاری بودند.سربازان

دایره ای هم همچنان مشغول محافظت از شهر و کشیک رفتن بودند. ارتور, پسر پادشاه دایره ها مثل

بقیه مشغول کارهای خودش بود. پدرش پادشاه شهر بود . پادشاهی عادل . ارتور تنها پسر او بود .
تمام زندگی دایره ها از راه تجارت الماس انجام میشد..معدنی که در نزدیکی انها بود پر از الماس بود

ولی به درد انها نمی خورد زیرا تمام حیات انها به ماده ای بستگی داشت که درون معدن زندگی بود.
معدن زندگی در اختیار قبیله ای بود در دوردست . و انها از طریق فروش الماس  مواد مورد نیاز خود را

تامین میکردند.
روز ها میگذشت ولی ناگهان یک روز کرمهایی سر از خاک بر اوردند و به خانه ها  , دایره ها و ... حمله

کردند . قصد انها  غارت نبود ..زیرا همه چیز را با اب دهان خود  ذوب میکردند . به نظر موجودات احمقی

می رسیدند . فقط خراب میکردند و جلو می رفتند. اهالی شهر فرار کردند . دسته دسته مقداری از

اذوقه خود را برداشتند و فرار کردند هر کدام به طرفی. در ان موقع ارتور در شهر بود  با دیدن این منظره

خود را سریعا از میان کرم ها به قصر رساند . کرمها هنوز به قصر نرسیده بودند . این طور به نظر می

رسید .
وارد قصر شد .مادرش با ناراحتی به طرف او رفت.
مادر گفت : پدرت . پدرت را بردند . چند تا از اون کرمها یک سر دسته هم همراهشان بود . پسرم باید

بروی دنبال پدرت و اورا پیدا کنی . من و گاموت(خدمت کار وفادار پادشاه) به طرف کوه الماس حرکت

میکنیم در انجا یک پناهگاه  مخفیانه وجود دارد. تا زمانی که پدرت را پیدا نکرده ای من انجا میمانم.
ارتور که نمی دانست چکار کند به طرف غرب حرکت کرد . اگر در قصر می ماند کرم ها به انجا حمله ور

می شدند  . باید بر سر راه خود مواد حیاتی باقیمانده را جمع میکرد تا اگر به خانواده ای رسید از از بین

رفتن انها جلوگیری کند. زیرا انبار مواد حیاتی منفجر شده بود . توسط سردسته کرمها . ولی ماده حیاتی

از انفجار اسیب پندانی نمی بیند .فقط به صورت پخش و پلا در شهر و اطراف ان ریخته بود.
همچنان که در حرکت بود یکی از خانواده ها را بر سر راه خود دید . انها را صدا زد . پرسید : کسی از

شما میداند پدر من را کجا بردند ؟ یکی از انها گفت وقتی به خانه ما حمله کردند من داخل کمد بودم..

می شنیدم که سر دسته انها می گفت زود باشید باید به طرف شمال برویم.
به محض این که  ارتور این کلمه را شنید. فریاد زد . : نه ! ...  معادن زندگی در شمال واقع شده . اگر

کرمها به انجا برسند همه را ذوب میکنند. باید بروم به طرف شما ل  . . .

+ نوشته شده در  جمعه هفدهم خرداد 1387ساعت 12:30  توسط محمد خداپرستان  | 

تجزیه ی اعداد به عوامل اول

مقدمه

مجموعه اعداد اول زیر مجموعه‌ای از اعداد طبیعی است که هر کدام از عضوهای آن فقط دو مقسوم علیه مثبت دارند که یکی از مقسوم علیه‌ها 1 و دیگری خود آن عدد می‌باشد. با این تعریف معلوم می‌شود که عدد اول نیست، چون فقط یک مقسوم علیه دارد. مجموعه اعداد اولی که عدد طبیعی m بر آنها بخش‌پذیر باشد عاملهای اول m نامیده می‌شوند. هر عدد طبیعی بزرگتر از 1 را می‌توان به حاصلضرب عاملهای اول تجزیه کرد.

شرایط بخش پذیری اعداد طبیعی به چند عدد نخست مجموعه اعداد اول

  • بخش‌پذیری بر 2: شرط لازم برای آن که یک عدد بر 2 بخش‌پذیر باشد، آن است که رقم یکان آن زوج باشد مانند 30 ، 1996 ، 204.

  • بخش‌پذیری بر 3: شرط لازم برای آن که عددی بر 3 بخش‌پذیر باشد آن است که مجموع ارقام آن عدد بر 3 بخش پذیر باشد. مانند 192 (زیرا مجموع ارقام آنها برابر 12 می‌باشد).

  • بخش‌پذیری بر 5: شرط لازم برای آن که یک عدد بر 5 بخش‌پذیر باشد آن است که رقم یکان آن صفر یا 5 باشد، مانند 205 ، 410.

  • بخش‌پذیری بر 7: عددی بر 7 بخش‌پذیر است که اگر رقم اول سمت چپ آن را در 3 ضرب کرده و با رقم دوم سمت چپ جمع کنیم وحاصل را بر 7 تقسیم کنیم، سپس باقیمانده تقسیم را دوباره در 2 ضرب کرده و با رقم سوم از سمت چپ جمع و حاصل را بر 7 تقسیم کنیم و همین عملها را تا آخرین رقم ادامه دهیم، در پایان باقیمانده بر 7 تقسیم بر 7 برابر با صفر باشد.

  • بخش‌پذیری بر 11: عددی بر 11 بخش‌پذیر است که اختلاف مجموع ارقام مرتبه زوج (یکان ، صدگان ، ده هزارگان و ... ) با مجموع ارقام مرتبه فرد (دهگان ، هزارگان ، صدگان و ...) بر 11 بخش‌پذیر باشد.

در حالت m

عددی مانند m اول است اگر و تنها اگر m بر هیچ کدام از اعداد اول تابیشتر از جذر m بخش‌پذیر نباشد. برای تجزیه یک عدد به حاصلضرب عاملهای اول ، آن را به کوچکترین عدد اولی که بر آن بخش‌پذیر باشد تقسیم می‌کنیم و خارج قسمت را نیز بر کوچکترین عدد اولی که بر آن بخش پذیر باشد تقسیم می‌کنیم و این کار را تاجایی ادامه می‌دهیم که خارج قسمت یک باشد. در این صورت حاصلضرب مقسوم علیه‌ها ، حاصلضرب عاملهای اول عدد مورد نظر خواهد بود. مانند 45 = 22 + 32

کوچکترین مضرب مشترک دو عدد

کوچکترین مضرب مشترک دو عدد a و b عبارت است از کوچکترین عددی که بر هم بر a و هم بر b بخش‌پذیر باشد. برای پیدا کردن کوچکترین مضرب مشترک دو عدد b,a (ک.م.م) که آن را به صورت a,b نمایش می‌دهیم، ابتدا دو عدد a و b را به حاصلضرب عاملهای اول تجزیه می‌کنیم. سپس کوچکترین مضرب مشترک دو عدد عبارت است از حاصلضرب عاملهای مشترک و غیر مشترک با توان بیشتر که در تجزیه دو عدد موجود است. به عنوان مثال ک.م.م دو عدد 36 و45 برابر است با 22X32X5 یعنی 180 خواهد بود.

بزرگترین مقسوم علیه مشترک دو عدد

بزرگترین مقسوم علیه مشترک دو عدد a و b عبارت است از بزرگترین عددی که هم a و هم b بر آن بخش‌پذیر باشد. برای پیدا کردن بزرگترین مقسوم علیه مشترک دو عدد b,a را به حاصلضرب (ب.م.م) که آن را به صورت (a,b) نمایش می‌دهیم؛ ابتدا دو عدد a و b را به حاصلضرب عاملهای اول تجزیه می‌کنیم، سپس بزرگترین مقسوم علیه مشترک دو عدد عبارت است از حاصلضرب عاملهای مشترک دو عدد a و b با توان بیشتر که در تجزیه دو عدد موجود است. به عنوان مثال ب.م.م دو عدد 45 و 36 برابر با 32 یعنی 9 می‌باشد.

دو عدد متباین

دو عدد را نسبت به هم اول یا متباین گویند هر گاه ب.م.م آن دو عدد برابر با 1 باشد. برای مثال دو عدد 8 و 9 نسبت به هم اول هستند، زیرا 1=(9 و 8). بزرگترین مقسوم علیه مشترک n عدد نیز به همین صورت تعریف می‌شود. باید توجه داشت که در این حالت منظور از عاملهای مشترک ، اعداد اولی هستند که در تجزیه تمامی n عدد مشترک می‌باشد. برای هر دو عدد طبیعی a,b تساوی (a ,b).a,b=ab برقرار می‌باشد.

تعداد مقسوم علیه های مثبت یک عدد

در حالت کلی اگر عدد تجزیه به عوامل a به صورت P2α2X PnαnXP1α1 باشد، که در آن P1 ، Pn ، ... ، P2 اعداد اول متمایز می باشند، برای نوشتن یک مقسوم علیه از a می‌توانیم از عاملهای P1 به تعداد 0 و1 و......و α1 و از عاملهای P2 به تعداد 0 و 1و......و α2 و.... و بالاخره از عاملهای P1 به تعداد 0 و 1 و ... αn انتخاب کنیم که طبق اصل ضرب این عدد به تعداد (α1+1)X(α2+1)….(αn+1) مقسوم علیه خواهد داشت.

اصل ضرب

اگر از A1 به m1 ، A2 مسیر ، از A2 به m2 ، A3 مسیر و ... و از An به mn ، An+1 مسیر مستقل موجود باشد، آنگاه برای اینکه از A1 به An+1 برسیم، m1Xm2X...Xmn مسیر وجود خواهد داشت.

جذر

جذر یک عدد یعنی پیدا کردن ریشه آن عدد است. جذر nm برابر است با ریشه دوم nm.
+ نوشته شده در  دوشنبه هفتم فروردین 1385ساعت 22:43  توسط محمد خداپرستان  | 

انگاره گلدباخ

 انگاره‌ی گلدباخ (حدس گلدباخ) از جمله معروف‌ترین مسایل حل نشده‌ی ریاضیات می‌باشد.برای درک این مساله تنها کافیست با مفهوم اعداد اول آشنا باشید. این انگاره چنین است:

هر عدد صحیح زوج بزرگ‌تر از 2 حاصل‌جمع دو عدد اول است.

صورت معادل آن چنین است:

هر عدد صحیح زوج بزرگ‌تر از 5 حاصل‌جمع سه عدد اول است.

تاریخچه

گلدباخ (1690 – 1764) به خاطر این حدس که آن را در سال 1742 در نامه‌ای به اویلر مطرح کرد، نامش در تاریخ ریاضیات باقی مانده است. او ملاحظه کرد در هر موردی که امتحان می‌کند، هر عدد زوج را (به جز 2 و 5) می‌توان به صورت مجموع سه عدد اول نوشت.اویلر حدس گلدباخ را تعمیم داد به طوری‌که هر عدد زوج بزرگ‌تر از 2 را می‌توان به صورت مجموع دو عدد اول نوشت. مثلاً

4=2+2 , 6=3+3 , 8=5+3 , 10=5+5 , 12=5+7 , 14=7+7 , 16=13+3 , 18=11+7 , 20=13+7 , … , 48 = 29 +19 , … , 100 = 97 + 3 , …

گلدباخ از اویلر پرسید که آیا می‌تواند این مطلب را برای همه عددهای زوج ثابت کند و یا اینکه مثال نقضی برای آن بیابد؟ شواهد تجربی در تایید اینکه هر عدد زوج به این صورت قابل نمایش است، کاملاً قانع‌کننده است و هر کسی می‌تواند با امتحان کردن چند عدد زوج، این موضوع را تحقیق کند. منشأ دشواری در این است که عددهای اول بر حسب ضرب تعریف می‌شوند در حالی که این مسأله با جمع سروکار دارد. به طور کلی، اثبات رابطه بین ویژگیهای ضربی و جمعی اعداد صحیح کار مشکلی است.

تلاش‌ها برای اثبات

  • در سال 1931 اشنیرلمان (1905-1938) که در آن موقع یک ریاضیدان روس جوان و گمنام بود موفقیت مهمی در این زمینه به دست آورد که برای همه متخصصان غیرمنتظره و شگفت‌آور بود. او ثابت کرد هر عدد صحیح مثبت را می‌توان به صورت مجموع حداکثر 300000 عدد اول نمایش داد. گر چه این نتیجه در مقایسه با هدف اصلی یعنی اثبات انگاره‌ی گلدباخ مضحک به نظر می‌رسد، ولی این نخستین گام در آن جهت بود. این اثبات مستقیم و سازنده است، اما هیچ روش خاصی برای تجزیه یک عدد صحیح دلخواه به اعداد اول ارائه نمی‌کند.
  • بعدا وینوگرادوف ریاضیدان روس با استفاده از روشهای هاردی ، لیتلوود و همکار هندی برجسته آنها رامانوجان در نظریه تحلیلی اعداد ، موفق شد تعداد عددهای اول مورد لزوم را از 300000 به 4 کاهش دهد. این نتیجه به تعداد مطلوب در انگاره گلدباخ بسیار نزدیکتر است ولی تفاوت عمده‌ای بین حکم اشنیرلمان و حکم وینوگرادوف وجود دارد که شاید مهمتر از اختلاف میان 300000 و 4 باشد. قضیه وینوگرادوف فقط به ازای همه اعداد صحیح «به اندازه کافی بزرگ» ثابت شده است؛ به بیان دقیقتر، او ثابت کرد عدد صحیح N ای وجود دارد به طوری که هر عدد صحیح n>N را می‌توان به شکل مجموع حداکثر 4 عدد اول نشان داد. اثبات وینوگرادوف راهی برای براورد کردن N به ما نشان نمی‌دهد، و بر خلاف اثبات اشنیرلمان، اساساً غیرمستقیم و غیرسازنده است. در حقیقت، چیزی که وینوگرادوف ثابت کرد این است که فرض نامتناهی بودن تعداد عددهای صحیحی که قابل تجزیه به حداکثر 4 عدد اول نیستند، به نتیجه نامعقولی می‌انجامد. در اینجا با نمونه خوبی از تفاوت عمیق میان دو نوع اثبات، مستقیم و غیرمستقیم، رو به روییم.
  • در سال 1956 باروتسکین با نشان دادن اینکه عدد exp(exp(16/038))=n در قضیه وینوگرادف کافیست گام دیگری در این راه نهاد.
  • در 1919 ویگوبرون رویکرد متفاوتی با عنوان روش غربال مطرح کرد که تعمیمی از غربال اراتستن است. او ثابت کرد هر عدد صحیح زوجی که به قدر کافی بزرگ باشد ، مجموع دو عدد است که هر کدام از آنها حاصل‌ضرب حداکثر 9 عدد اول هستند.
  • در 1937 ریچی ثابت کرد هر عدد زوجی که به قدر کافی بزرگ باشد مجموع دو عدد است که یکی حاصل‌ضرب حداکثر دو عدد اول و دیگری حاصل‌ضرب حداکثر 366 عدد اول است.
  • کُن با بهره‌گیری از ایده‌های ترکیبیاتی بوخشتاب ثابت کرد هر عدد زوج بقدر کافی بزرگ مجموع دو عدد است که هر یک حاصل‌ضرب حداکثر چهار عدد اول است.
  • در 1957 ، ونگ یوان با فرض درست بودن صورت تعمیم یافته فرضیه ریمان ثابت کرد هر عدد صحیح زوج بقدر کافی بزرگ ،‌مجموع یک عدد اول و حاصل‌ضرب حداکثر سه عدد اول است.
  • در 1948 آلفرد بدون استفاده از صورت تعمیم یافته فرضیه ریمان ثابت کرد که هر عدد زوج بقدر کافی بزرگ مجموع یک عدد اول و حاصل‌ضرب حداکثر c عدد اول است. ( c عددی ثابت و مجهول است).
  • در 1961 باربن نشان داد که c=9 برای این منظور کفایت می‌کند.
  • در 1962 ، پان چنگ دونگ این مقدار را به c=5 کاهش داد. مدت کوتاهی پس از آن باربن و پان ، مستقل از هم ،‌آن را به c=4 کاهش دادند.
  • در 1965 بوخشتاب این قضیه را به ازای c=3 کاهش داد.
  • در 1966 ، چن جینگ ران روش غربال را بهتر کرد و قضیه را به ازای c=2 ثابت کرد. یعنی
هر عدد صحیح زوجی که به قدر کافی بزرگ باشد ، مجموع یک عدد اول و حاصل‌ضرب حداکثر دو عدد اول است.
+ نوشته شده در  جمعه بیست و یکم بهمن 1384ساعت 21:40  توسط محمد خداپرستان  | 

قضیه پاسکال

بلز پاسکال در سن 16 سالگی قضیه‌ای را مطرح نمود که تعمیمی از قضیه‌ی ساده‌تر دیگر منسوب به پاپوس اسکندرانی بود . صورت این قضیه چنین است :
اضلاع متقابل یک شش‌ضلعی محاط در مقطعی مخروطی ، یکدیگر را در سه نقطه‌ی هم‌خط قطع می‌کنند.
این قضیه در هندسه‌ی تصویری دوگان قضیه‌ی بریانشون می‌باشد.

درک قضیه پاسکال با بیان زیر ساده‌تر است:
شش نقطه‌ی 1 ، 2 ، 3 ، 4 ،‌ 5 و 6 روی یک مقطع مخروطی داده شده‌اند. نقطه‌های متوالی را بوسیله‌ی خط‌های ( 2 ، 1 ) ، ( 3 ، 2 ) ، ( 4 ، 3 ) ، ( 5 ، 4 ) ، ( 6 ، 5 ) ، ( 1 ، 6 ) به هم وصل می‌کنیم. نقطه‌های تقاطع ( 2 ، 1 ) با ( 5 ، 4 ) ، ( 3 ، 2 ) با ( 2 ، 1 ) و ( 6 ، 5 ) با ( 1 ، 6 ) را مشخص می‌کنیم. در این صورت ، این سه نقطه بر یک خط راست واقعند.
 
                          img/daneshnameh_up/e/eb/pascal_theo.jpg
+ نوشته شده در  جمعه بیست و یکم بهمن 1384ساعت 21:16  توسط محمد خداپرستان  | 

قضیه‌ی بریانشون

قضیه: اگر ضلع‌ های یک شش ضلعی یک در میان از نقطه‌های ثابت P و Q بگذرند، آنگاه سه قطری که راس‌های متقابل شش ضلعی را به هم وصل می‌کنند، همرس هستند .

  • این قضیه دوگان ، قضیه پاسکال می‌باشد.

اثبات:می‌توان نقطه P و نقطه تقاطع دو تا از قطرها، مثلاً 14 و 36، را با یک عمل تصویر به بینهایت فرستاد. بنابر 36 | | 14 داریم a / b = u / v ولی x / y = a / b و u / v = r / s. پس x / y = r / s و 25 | | 36 ، بنابراین هر سه قطع موازی و در نتیجه همرس‌اند. این برای اثبات قضیه در حالت کلی کفایت می‌کند.

img/daneshnameh_up/c/cb/Brianchon.jpg
+ نوشته شده در  جمعه بیست و یکم بهمن 1384ساعت 21:8  توسط محمد خداپرستان  | 

مثلثات کروی در نجوم در بخشها ی مختلف کاربرد وسیعی دارد از جمله از این کاربردها :
  • مختصات نجومی (سه دستگاه مختصات نجومی وجود دارد که با مثلثات کروی کار میکنند.)
  • اندازه گیری زوایای میل ، سمت ، عرض جغرافیایی ، طول جغرافیایی و ... در این دستگاهها با ابزار مثاثات کروی ممکن هست.
  • انحراف محور خورشید (دایرةالبروج خورشید) را از روی مثلثات کروی میسنجند.
  • در اندازه گیری فواصل نجومی و تنظیم اوقات شرعی ، طلوع و غروب خورشید و رصدهای نجومی مثلثات کروی نقش بسزایی دارد.
img/daneshnameh_up/7/7c/reyaziimosalasat.gif


مثلثات و علم جغرافی


شکل کره زمین، در واقع نامنظم است و شبه کره geoid نامیده می شود. اما انحرافهایی از یکی از اجسام تابع محاسبه ریاضی نسبت به اندازه آنها کوچک اند.
تحلیل مسیرهای ماهواره های زمینی مصنوعی نشان داده است که یک بیضی وار مناسب با سه محور بهترین شکل را برای شبه کره به دست می دهد.
در واقع تفاوت بین دو محور واقع در صفحه استوایی(equatorial plane) آنقدر کوچک است که تاکنون برای اندازه گیریهای زمینی مشخص نشده است.
بنابراین در ژئودرزی عالی، کره زمین به صورت کره وار spheroid در نظر گرفته می شود.
در این مورد، اولین محاسبات دقیق توسط فردریش ویلهلم بسل انجام گرفت.
در 1924 بیضوار محاسبه شده توسط "J.HAYFORD"از لحاظ بین المللی شناخته شد.
جدیدترین مقادیر توسط "F.N.KRASOVSKIL" مشخص شده اند.این مقادیر برای کار در ژئودزی در روسیه به کار میروند.

نجوم کروی

مواضع کشتیها و هواپیماها، غیر از روش وضعیت، حتی امروزه نیز با استفاده از ستاره ها مشخص می شود. این روش زمانی تنها روش دریانوردی در دریاهای بزرگ بود و سیاحان سرزمینهای ناشناخته تنها به آنها اطمینان می کردند.
در این مورد اندازه گیریهای لازم با قطب نما، تئودولیت، سکستانت آیینه ای یا ابزار زاویه- اندازه گیری مشابه و ساعتی دقیق انجام می گرفت.
بعدها از رادیو برای انتقال علامت زمانی برای جهت یابی تقریبی کفایت می کند. در تعیین دقیق موضع مورد نظر باید اطلاعات مربوط به وضعیت ستارگان بسادگی قرار گرفته و حرکت خورشید، سیارات، ماه و ماههای مشتری و دستگاههای مختصاتنجومی را که وضعیتهای واقع در افلاک درآنها داده شده اند بدانیم.
اطلاعاتی از نجوم کروی که برای مقاصد دریانوردی دارای اهمیت اند در تقویمهای دریانوردی و نجومی آورده شده اند از دستگاههای افقی و استوایی.
این دستگاهها مانند تمام دستگاههای مختصاتی نجومی، مبتنی بر این حقیقت اند که آسمان پرستاره در نظر رصدکننده به صورت قسمتی از کره ای عظیم موسوم به کره سماوی آشکار می شود. موضع هر نقطه واقع بر این کره را می توان با استفاده از دو مختص عددی مشخص کرد.
هر دایره عظیمه با قطبهایش به عنوان دستگاهی مرجع برای این دو مختص مناسب است. بر این دایره یک زاویه در جهت مشخص شده از نقطه ای معلوم اندازه گیری می شود و اندازه دومی بر اندازه عظیمه عمومی گذرنده از نقطه ای که می خواهیم موضعش را معین کنیم و قطب دایره مبنا معین می شود.

+ نوشته شده در  دوشنبه دهم بهمن 1384ساعت 16:25  توسط محمد خداپرستان  | 

قضیه منولائوس

img/daneshnameh_up/1/1d/MENE1.jpg

قضیه منولائوس، قضیه ای است که به بحث در مورد مثلثها در هندسه مسطحه میپردازد.مثلث ABC را در نظر میگیریم.فرض میکنیم نقاط M ،E ،N روی خطوط AB ،BC ،AC قرار دارند.طبق این قضیه نقاط M ،E ،N روی یک خط قرار دارند اگر و تنها اگر داشته باشیم:



اثبات

برای اثبات این قضیه ابتداخط CF را موازی با خط AB (نقطه F را بین نقاط E , N در نظر میگیریم)رسم میکنیم در این صورت مثلث AMN با مثلث CFN و نیز مثلث BEM با مثلث CEF متشابه خواهد بود.پس خواهیم داشت:


از دو رابطه فوق میتوانیم نتیجه بگیریم که :




و یا میتوانیم بنویسیم :



با توجه به اینکه NC=-CN پس:

 
+ نوشته شده در  جمعه شانزدهم دی 1384ساعت 11:46  توسط محمد خداپرستان  | 

تئوری اعداد





تئوری اعداد



تئوری اعداد number theory شاخه ای از ریاضیات محض pure mathematics است که در مورد خواص اعداد صحیح integers بحث می کند و حاوی بسیاری مسائل است که حتی غیر ریاضیدانان به راحتی آنها را متوجه می شوند .به طور کلی ایـن شاخه ، مسائل مربوط به مطالعه اعداد صحیح را مطرح می کند. تئوری اعداد را می توان بنا به روشهای بررسی سؤالات به چندین بخش تقسیم کرد. مثلاً به سرفصل های تئوری اعداد مراجعه نمایید .



  • تئوری تحلیلی اعداد Analytic number theory ازحسابانcalculus و آنالیز مختلطcomplex analysis برای مطالعه‌ی اعداد صحیح استفاه می کند و با سؤالاتی در مورد اعداد صحیح دست و پنجه نرم می کند که در تئوری مقدماتی اعداد بررسی و بحث در مورد آن بسیار دشوار به نظر می‌رسد . قضیه ی اعداد اولprime number theorem و فرضیه ریمان Riemann hypothesis مثال هایی از آن هستند . مسئله ی وارینگ Waring’s problem ( که عدد صحیحی را به صورت جمع چند مربع یا مکعب چند عدد نشان می دهد ) ،انگاره‌ی اعداد اول دوقلو Twin prime conjecture(که تعداد بینهایت عدد اول با اختلاف 2 را پیدا می کند ) ، و فرضیه ی گلدباخGoldbach’s conjecture ( که عددهای زوج داده شده را به صورت مجموع دو عدد اول پیدا می کند ) با روشهای تحلیلی مورد حمله قرار گرفته شده اند . اثبات متعالی بودن transcendence ثابت های ریاضی ، مانند e و پی در بخش تئوری اعداد تحلیلی قرار دارند . بعضی ها حکم هایی در مورد اعداد متعالی را از محدوده ی مطالعات اعداد صحیح خارج می کنند ، در واقع مقادیر ممکن برای چند جمله ایها با ضریب های صحیح مانند e و پی به مبحث تقریب دیوفانتین Diophantine aproximation ارتباط نزدیک دارند ؛ و سؤال آنها این است که چگونه می توان یک عدد حقیقی داده شده را با یک عدد گویا rational تقریب زد ؟

  • تئوری جبری اعداد ، مفهوم عدد را به اعداد جبری algebraic numbers که همان ریشه های چند جمله ایها با ضرایب گویا rational coefficient هستند گسترش می‌دهد.در این حوزه مباحثی همانند اعداد صحیح به نام اعداد صحیح جبری algebraic integers وجود دارد . در اینجا لازم نیست به صورت های آشنای اعداد صحیح ، ( مانند تجزیه یکتا the unique factorization) پایبند باشیم .مزیت روش استفاده شده --تئوری گالوا Galois theory ، میدان همانستگی field cohomology ، تئوری رده ی میدان class field theory ، نمایش گروه ها group representations و L-تابع‌ها L-functions این است که به ما اجازه می دهدبرای این رده از اعداد ، این ترتیب را تا حدودی بپوشانیم .تعدادی از سؤالات قضیه ی اعداد با مطالعه پیمانه p برای کلیه اعداد اول p مورد حمله قرار گرفته شده اند . (به میدانهای متناهی finite fields مراحعه کنید ) .به چنین چیزی localization می گویند که به ساختمان اعداد p ادیک p-adic numbers می انجامد . به این محدوده تحلیل موضعی local analysis می گویند که از تئوری اعداد جبری ناشی می شود .

  • تئوری ترکیبیاتی اعداد به بررسی ، مطالعه و حل مساله‌های تئوری اعداد با استفاده از تکنیک‌های ترکیبیاتی می‌پردازد. پل اردوش کارهای بزرگی در این زمینه انجام داد. روش‌های جبری و تحلیلی در این شاخه از تئوری اعداد کاربرد فراوان دارند.

  • تئوری هندسی اعداد همه ی فرم های هندسی را در بر می گیرد ؛و از قضیه ی مینکوسکی Minkowski’s theorem در ارتباط با نقاط مشبکه lattice points در مجموعه های محدب convex sets و جستجو در بسته بندی کره ها sphere packings شروع می شود .هندسه جبری بخصوص خم‌های بیضویelliptic curves نیز به کار می آیند .این تکنیک‌ها در اثبات آخرین قضیه معروف فرما Fermat’s last theorem تاثیر فراوان داشته اند .

  • تئوری محاسباتی اعداد computational number theory به الگوریتم های تئوری اعداد می پردازد والگوریتم های سریع برای امتحان اعداد اول prime testing و تجزیه اعداد صحیح integer factorization در مبحث کریپتوگرافی cryptography کاربرد های مهمی دارند .

.





تاریخچه تئوری اعداد

بعد از دوران یونان باستان ، تئوری اعداد در قرن شانزدهم و هفدهم با زحمات ویتViete ، باشه دو مزیریاکBachet de Meziriac ، و بخصوص فرما Fermat دوباره مورد توجه قرار گرفت . در قرن هجدهم اولرEuler و لاگرانژ Lagrangeبه قضیه پرداختند و در همین مواقع لژاندر Legendre و گاوسGauss به آن تعبیر علمی بخشیدند . در 1801 گاوس در مقاله ی Disquisitiones Arithmeticæ حساب تئوری اعداد مدرن را پایه گذاری کرد .

چبیشفChebyshev کران هایی برای تعداد اعداد اول بین یک بازه ارائه داد . ریمان Riemann اظهار کرد که حد تعداد اعداد اول از یک عدد داده شده تجاوز نمی کند . (قضیه ی عدد اول prime number theory. ) و آنالیز مختلط complex analysis را در تئوری تابع زتای ریمان Riemann zeta function گنجاند و فرمول صریح تئوری اعداد اول explicit formulae of prime number theory را از صفر های آن نتیجه گرفت .
تئوری همنهشتی congruences از Disquisitiones گاوس شروع شد . او علامت گذاری زیر را پیشنهاد کرد :
(mod(c

چبیشف در سال 1847 به زبان روسی کاری را در این زمینه منتشر کرد و سره Serret آن را در فرانسه عمومی کرد . بجای خلاصه کردن کارهای قبلی ، لوژاندر قانون تقابل درجه ی دوم law of quadratic reciprocity را گذاشت . این قانون از استقراء induction کشف شد و قبلاً اولر آن را مطرح کرده بود. لوژاندر در تئوری اعداد Théorie des Nombres برای حالت های خاص آن را ثابت کرد . جدا از کارهای اولر و لوژاندر ، گاوس این قانون را در سال 1795 کشف کرد و اولین کسی بود که یک اثبات کلی ارائه داد . کوشی Cauchy ؛ دیریکله Dirichlet ( که مقاله ی Vorlesungen über Zahlentheorie او یک مقاله ی کلاسیک است) ؛ ژاکوبی Jacobi که علامت ژاکوبی Jacobi symbol را معرفی کرد ؛ لیوویلLiouville ؛ زلرZeller ؛ آیزنشتین Eisenstein؛ کومرKummer و کرونکر Kronecker نیز در این زمینه کارهایی کرده اند . این تئوری تقابل درجه دوم و سوم cubic and biquadratic reciprocity را شامل می شود. نمایش اعداد با صورت درجه ی دوم دوتایی binary quadratic forms مدیون گاوس است . کوشی ، پوانسو Poinsot ، لبگ Lebesgue و بخصوص هرمیت Hermite به موضوع چیزهایی افزوده اند . آیزنشتاین Eisenstein در تئوری صورت های سه گانه پیشتاز است ، و تئوری فرمها theory of forms به طور کلی مدیون او و اچ. اسمیتH. J. S. Smith است. اسمیت دسته بندی کاملی از صورتهای سه گانه انجام داد و تحقیقات گاوس در مورد صورت های درجه ی دوم حقیقی به فرمهای مختلط افزود . جستجوهایی در مورد نمایش اعداد به صورت جمع 4، 5 ،6 ، 7 ، 8 ، مربع توسط آیزنشتاین ادامه یافت و اسمیت آن را کامل کرد .
+ نوشته شده در  پنجشنبه هشتم دی 1384ساعت 17:2  توسط محمد خداپرستان  | 

دایره های محاطی داخلی و خارجی یک مثلث

img/daneshnameh_up/3/3f/Excircles.png
یک مثلث (سیاه)
با دایره داخلی (بنفش)،
دوایر خارجی (آبی)،
نیمسازهای زوایای داخلی (قرمز)
و نیمسازهای زوایای خارجی (سبز)


دایره های محاطی داخلی و خارجی یک مثلث

در هندسه، دایره محاطی داخلی یک مثلث بزرگترین دایرهای است که آن مثلث میتواند در بر بگیرد؛ این دایره سه ضلع آنرا لمس مینماید ( بر آنها
مماس میباشد). مرکز دایره محاطی مرکز داخلی مثلث نامیده میشود. یک دایره محاطی خارجی مثلث، یک دایره در خارج مثلث است که بر یکی از اضلاع مثلث و امتداد دو ضلع دیگر مماس باشد. هر مثلث دارای سه دایره محاطی خارجی متمایز، که هر کدام بر یکی از اضلاع مثلث مماس میباشد.

مرکز دایره محاطی داخلی بر روی تقاطع نیمسازهای زوایای داخلی قرار دارد. مرکز یک دایره محاطی خارجی بر روی تقاطع نیمساز یک
زاویه داخلی و نیمسازهای خارجی دو زاویه دیگر قرار دارد. از این رو، استنباط میگردد که مرکز دایره محاطی داخلی و سه مرکز دایره های محاطی خارجی یک سیستم چهارمرکزی (orthocentric) را تشکیل میدهند.

شعاع این دوایر ارتباط نزدیکی با سطح یک مثلث دارد. اگر S سطح مثلث و اضلاع آن b ،a و c باشند،

شعاع دایره داخلی ( که "شعاع داخلی" نیز گفته میشود) برابر است با: (S/(2(a+b+c).

شعاع دایره خارجی در سمت a برابر است با: (S/(2(-a+b+c

برای دایره در سمت b برابر است با: (S/(2(a-b+c)

و برای دایره در سمت c برابر است با: (S/(2(a+b-c).

از این روابط درمیابیم که دوایر خارجی از دایره داخلی بزرگتراند و بزرگترین دایره خارجی، دایره ای است که به بزرگترین ضلع چسبیده است.


مثلث با دایره داخلی (سیاه),
مثلث تماس (قرمز)، نقطه جرگونه (سبز)
















دایره نه نقطه ای مثلث بر سه دایره خارجی و همچنین دایره داخلی مماس میباشد. نقطه فورباخ(Feuerbach) روی دایره داخلی قرار دارد.

با علامت گذاری رئوس مثلث با B، A و C و سه نقطه تماس دایره داخلی و مثلث با TB، TA و TC (که TA روبروی A قرار داشته و به همین ترتیب بقیه)، مثلث TATBTC

+ نوشته شده در  سه شنبه ششم دی 1384ساعت 15:40  توسط محمد خداپرستان  | 

آمار

آمار علم و عمل توسعه دانش انسانی از طریق استفاده از داده های تجربی است. آمار بر نظریه‌ی آمار مبتنی است که شاخه‌ای از ریاضیات کاربردی است. در نظریه‌ی آمار، اتفاقات تصادفی و عدم قطعیت توسط نظریه احتمال مدل می‌شوند. عمل آماری، شامل برنامه‌ریزی، جمع‌بندی، و تفسیر مشاهدات غیر قطعی است. از آنجا که هدف آمار این است که از داده‌های موجود «بهترین» اطلاعات را تولید کند، بعضی مؤلفین آمار را شاخه‌ای از نظریه‌ی تصمیم‌گیری به شمار می‌آورند.

تاریخچه

سرآغاز اولیه آمار را باید در شمارش های آماری حوالی آغاز قرن اول میلادی یافت. اما ،تنها در قرن هجدهم بود که این علم ، با به کار رفتن در توصیف جنبه هایی که شرایط یک وضعیت را مشخص میکردند ، به عنوان رشته ای علمی و مستقل شروع به مطرح شدن کرد.
مفهوم از کلمه
لاتینی ،به معنی شرط ، استخراج شده است. مدت های مدید ، این علم ، محدود به کار در این حوزه بود ، و تنها در دهه های اخیر از این انحصاری جدا شدو ، و به کمک نظریه احتمال ،شروع به بررسی روش های تحلیل داده های آماری و اثبات فرض های آماری کرد.
روش های این آمار ریاضی با آشکار کردن قوانین جدید ، به ابزاری موثر در علوم طبیعی و تکنولوژی تبدیل شد.

جامعه و نمونه

جامعه یک بررسی آماری دارای مشاهده ها یا آزمایش هایی تحت شرایطی یکسان ، به عنوان عنصرهای خود است. هر یک از این عنصرها را میتوان نسبت به مشخصه های متفاوتی بررسی کرد ، که می توانند به عنوان متغیرهای تصادفی XوY .... در نظر گرفته شوند.
اگر مشخصه تحت بررسی X ، دارای
تابع توزیع F در جامعه مربوط باشد ، آنگاه گفته می شود که جامعه مورد بحث دارای توزیع F نسبت به مشخصه X است. در بررسی های آماری همواره زیر مجموعه ای متناهی از عناصر جامعه مورد تحقیق قرار می گیرد.این زیر مجموعه به نمونه موسوم است ، و n، تعداد عناصر موجود در آن ، اندازه نمونه نامیده می شود.

مثال

اگر وزن پسر بچه های ده ساله متغیر تصادفی x باشد ، در این صورت تمام پسر بچه های به این سن یک جامعه تشکیل می دهند . اندازه های وزن پسربچه های در شماری از مکان ها یک نمونه می سازند ، و هر پسر بچه عنصری از جامعه مزبور است . وزن مورد بحث مشخصه ای از عنصر های مزبور به شمار می رود ، و سایر مشخصه ها ، به عنوان مثال ، بلندی قد و اندازه سینه اند.

طرح آزمایش

در بررسی یک مسئله با روش های آماری ، باید نقشه آزمایش کشیده شود که شامل روش جمع آوری داده ها،اندازه نمونه مورد نظر و روش حل آن مسئله است. در این مورد هر چه نقشه آزمایش دقیق تر باشد ، نتایج به دست آمده از روش های آماری بهتر خواهند بود . بخصوص ، باید اطمینان حاصل شود که هیچ یک از اندازه گیری هایی که برای نتایج مورد نظر دارای اهمیت اند از قلم نیفتند یا ناقص نباشند . اما در این مورد همچنین می توان ، تنها به همان اندازه که می شود با بخش ناچیزی از هزینه ها به دست آورد قناعت و از دستاوردی با یک رشته آزمون بسیار پرخرج اجتناب کرد.
در این رابطه ، نکات زیر از اهمیت برخوردارند:

  • مواد یا اطلاعات بررسی شده باید همگن باشند ؛ یعنی ،روش آزمون ،در دوره بررسی ، باید یکسان باقی بماند. در وسایل یا شرایط تولید نباید تغییری داده شود ، و ابزارهای اندازه گیری با دقت های متفاوت نباید به کار روند.


 

  • بایدتا آنجا که امکان دارد خطاهای منظم یا عوامل موثر کنار گذاشته شوند . به عنوان مثال ، اگر مایل باشیم دو ماده را با هم مقایسه کنیم ، باید هر دو را در یک دستگاه تهیه کرده باشیم ، چه در غیر این صورت تفاوت دستگاه ها در نتایج بررسی وارد می شود ، و در کشاورزی ، در آزمون کودهای متفاوت ، باید زمین را ،به خاطر یکسان کردن تاثیر نوع خاک و موقعیت آن ، به باریکه های موازی تقسیم کرد.


باید نظارتی در نظر گرفته شود. در این مورد، یا برای مشخصه تحت بررسی مقادیر استانداردی موجودند ،که می توانند با نتایج آزمون مقایسه شوند ، یا آزمونهای نظارتی باید انجام گیرند . به عنوان مثال ، در آزمایش مربوط به کودها ، باید تاثیر یک کود از تفاوت بین گیاهانی که که با آن یا بدون آن ،تحت شرایط محیطی یکسان ،رشد کرده اند ، ارزیابی شود.

انتخاب نمونه باید تصادفی یا نماینده ای باشد . انتخاب تصادفی انتخابی است که در آن هر عنصر برای اینکه عضو آن نمونه باشد یا نباشد ، از احتمال یکسان برخوردار است. به عنوان مثال ، در یک محموله پیچ ، نمونه مورد آزمون نباید تماماَ از یک مکان انتخاب شود ،بلکه باید روی کل محموله توزیع شده باشد ، و در اندازه گیری ضخامت سیم ها نقاط اندازه گیری شده باید به طور تصادفی روی تمام طول سیم توزیع شده باشد.

انتخاب تصادفی عناصر را می توان به کمک جداول اعداد تصادفی انجام داد ، و انتخاب نماینده ای نمونه را می توان زمانی انجام داد که ماده تحت بررسی را بتوان به گونه ای یکتا به اجزایی تقسیم کرد . به عنوان مثال ، امکان پذیر است که یک محموله پیچ را به چنان طریقی تقسیم کنیم که هر جزء مزبور ، به تصادف انتخاب کرد ، ودر این صورت کل آنها نمونه مورد نظر را تشکیل می دهند. به این طریق تصویری از محموله ، بر مبنای مقیاسی کاهش یافته به دست می آید.
با توجه به اندازه نمونه مورد آزمون ، البته باید به بررسی مورد بزرگ تر و استنتاج بهتر ، درباره جامعه ای که از آن می توان ساخت ، پرداخت ،اما از طرف دیگر ، اندازه مزبور ، به دلایل زمانی و تلاش به کار رفته ، معمولاَ کوچک در نظر گرفته می شود، بنابر این باید انحرافی تصادفی از نتایج را نیز به حساب بیاوریم. هنگامی که ، با روش های آماری ، استنتاجاتی درباره جامعه ای به دست می آوریم باید اندازه نمونه مورد آزمون را نیز در نظر بگیریم.

+ نوشته شده در  سه شنبه ششم دی 1384ساعت 15:33  توسط محمد خداپرستان  | 

پارادوکس

زمینه تاریخی پارادوکس


پیدایش پارادوکس ها زمینه تاریخی دارد.برای فهم بهثر ان داستان زیر را ذکر میکنیم:
در یک روز جمعه دادگاه شخصی را به مرگ محکوم کرد. قاضی به زندانیِ محکوم گفت:

ظهریکی از روزهای هفته‌ی آینده حکم اعدام درباره‌ی تو اجرا خواهد شد، ولی ما آنروز را برای تو مشخص نخواهیم کرد و تو هرگز قبل از آن روز اطلاع پیدا نخواهی کرد و فقط شش ساعت قبل یعنی صبحِ روز اجرای حکم موضوع را به تو اطلاع خواهیم داد.

قاضیِ مذکور در همه‌ی عالم به ذکاوت و خوش‌قولی مشهور بود و همیشه دقیقاً به گفته‌ی خود عمل می‌نمود.

زندانی به همراهی وکیل مدافع خود به سلولش داخل شد و هر دو غمزده در گوشه‌ای به فکر فرو رفتند. ناگاه وکیل مدافع با لبخندی پیروزمندانه سکوت را شکست و گفت:

اجرای حکم قاضی امکان ندارد.

زندانی گفت:

من که چیزی سردر نمی‌آورم. چرا؟

وکیل مدافع پاسخ داد:

اجازه بده تا درست برایت شرح دهم: مسلماًً آن‌ها روز جمعه نمی‌نتوانند تو را اعدام کنند. به دلیلِ اینکه اگر فرضاً بخواهند در روز جمعه‌ی آینده حکم را اجرا نمایند. در این صورت تو تمام روزهای هفته و همچنین بعدازظهر پنج‌شنبه زنده خواهی بود و چون فقط روز جمعه یعنی یک روز دیگر به مهلت باقی مانده، بعد ازظهر پنج‌شنبه برای تو مسلم خواهد شد که فردا یعنی روز جمعه و تنها روز آخر هفته ، حکم اجرا خواهد شد. در نتیجه تو روز اجرای حکم را یک روز پیش‌تر پیش‌بینی و قبل از صبح جمعه از آن اطلاع حاصل کرده‌ای و این موضوع نقض حکم قاضی بوده و گفته‌ی او را بی‌اعتبار خواهد کرد.


زندانی گفته‌ی او را تصدیق کرد.وکیل مدافع ادامه داد:

بنابراین روز جمعه‌ی آینده از فهرستِ روزهای مهلت حذف و در آن روز حکم غیرقابل اجرا است. و اما روز پنج‌شنبه نیز نمی‌توانند تو را اعدام کنند چون در بعدازظهرِ چهارشنبه دو روز بیشتر به آخر هفته نمانده و چون روز جمعه از فهرست حذف شد ، تنها روز پنج‌شنبه آخرین روز اجرای حکم می‌باشد نتیجتاً بعدازظهر چهارشنبه تو خواهی دانست در روز پنج‌شنبه که آخرین روز امکان اجرای حکم است، تو را اعدام خواهند کرد. اطلاع تو یک روز پیشتر از اجرای حکم مجدداً متناقض با حکم قاضی است. بنابراین پنج‌شنبه نیز حکم غیرقابل اجرا است. چهارشنبه نیز امکان اجرای حکم وجود ندارد چون جمعه و پنج‌شنبه حکم غیرقابل اجرا شد و فقط چهارشنبه آخرین روز اجرای حکم تشخیص داده شد و تو که بعدازظهر سه‌شنبه هنوز زنده هستی، اجرای حکم روز چهارشنبه را پیش‌بینی خواهی کرد و از آن اطلاع خواهی یافت.

در این موقع که زندانی از حالت غمزدگی بیرون آمده بود با لبخندی مسرت‌بخش گفت:

پس به هر طریق می‌توان گفت که روز سه‌شنبه و سپس دوشنبه و بالاخره یک‌شنبه نمی‌توانند مرا اعدام کنند و فقط فردا یعنی شنبه باقی است. و اما فردا نیز اجرای حکم برای آنها غیرممکن است چون در این صورت من امروز موضوع را خواهم فهمید.


ملاحظه می‌شود از لحاظ منطقی هیچ تناقضی در حکم قاضی جهت اعدام زندانی وجود ندارد با این وجود حکمش غیرقابل اجرا است. به دلایل بالا به نظر می‌آید که حکم قاضی باعث نقض حکم خودش شده است، اگر حکم را اجرا کند خلاف حکم خودش شده است، اگر حکم را اجرا کند خلاف حکم خود عمل کرده و اگر اجرا نکند باز هم خلاف حکم خود رفتار نموده.


روایت دیگری از این پارادکس از یک اعلامیه‌ی فرمانده‌ی نظامی گفتگو می‌کند که در آن ذکر شده:

برای تمرین ، در یکی از شبهای هفته‌ی آینده آژیر خطر کشیده خواهد شد. شب تمرین در شش بعدازظهر همان روز به اطلاع عامه خواهد رسید و تا شش بعدازظهر کسی از شب موعود مطلع نخواهد شد.


به ظاهر چنین به نظر می رسد که خود این اعلامیه ثابت می‌کند که تمرین هرگز انجام نخواهد گرفت. به زبان دیگر اجرای تمرین عملی نیست مگر این که به متن اعلامیه عمل نشود.

پارادوکس درریاضی


در ریاضیات نیز میتوان به یک پارادوکس مهم در نظریه مجموعه ها به نام پارادوکس راسل اشاره کرد:
مجموعهA را مجموعه ای تعریف می کنیم که شامل اعضای خود نباشد .یعنی

در این صورت اگر انگاه

اگر انگاه

که این پارادوکس از معروفثرین پارادوکس ها در
نظریه مجموعه هامی باشد

+ نوشته شده در  سه شنبه ششم دی 1384ساعت 14:25  توسط محمد خداپرستان  | 

قضیه اساسی علم حساب

قضیه اساسی حساب در نظریه اعداد به این شکل بیان می شود:

هر عدد طبیعی بزرگتر از یک را می توان به طور یکتا به صورت حاصلضربی از اعداداول نوشت.

به عنوان مثال:



حال اگر ترتیب نوشتن عاملها را در نظر نگیریم این تنها تجزیه از عدد 6936 به عوامل اول است که می توانیم بنویسیم.

اثبات این قضیه شامل دو قسمت است. ابتدا نشان می دهیم هر عدد را می توان به صورت حاصلضربی از اعداد اول نوشت و سپس ثابت می کنیم این تجزیه یکتاست.

اثبات:


برهان: فرض می کنیم عدد صحیح مثبتی مانند x وجود دارد که نمی توان آن را به حاصلضرب اعداد اول تجزیه کرد. مجموعه A را به این شکل تعریف می کنیم:

مجموعه n های عضو اعداد طبیعی به طوریکه 1
A مخالف تهی است زیرا x عضوی از A می باشد. پس بنا به اصل خوش ترتیبی اعداد طبیعی A عضو ابتدا دارد.

فرض می کنیم m ابتدای A باشد(یعنی m عضوی از A است و در نتیجه قابل تجزیه به اعداد اول هم نیست). بنابراین m اول نیست پس عددی مرکب است یعنی:



بدیهی است که d1 و d2 عضو A نیستند زیرا از m کوچکترند لذا هر دو تجزیه پذیرند. بنابراین:






به طوریکه p ها و q ها اول هستند. در نتیجه:


می بینیم که m تجزیه پذیر شده و این با فرض ما در تناقض است.

+ نوشته شده در  یکشنبه چهارم دی 1384ساعت 14:58  توسط محمد خداپرستان  | 

چرتکه


img/daneshnameh_up/a/a2/ABACUS2.gif


چرتکه (Abacus) وسیله محاسبه ای قدیمی است که هنوز در بسیاری از کشورهای آسیایی مورد استفاده قرار میگیرد.

ساختار چرتکه


یک چرتکه استاندارد برای انجام چهار عمل اصلی ریاضی مورد استفاده قرار میگیرد و میتوان از آن برای محاسبه ریشه دوم و سوم اعداد نیز استفاده کرد. چرتکه از یک قاب اصلی تشکیل شده است که چندین میله عمودی در آن جاسازی شده و در هر یک از این میله ها تعدادی مهره چوبی وجود دارند که به بالا و پایین حرکت میکنند. یک میله افقی فضای داخل قاب را به دو قسمت تقسیم میکند که به نام ردیف بالا و ردیف پایین شناخته میشوند.

اجزا و شیوه محاسبه


چرتکه را برای استفاده بر روی سطح صافی مانند میز یا روی پا قرار میدهند و تمام مهره های بالا و پایین را به سمت مخالف میله افقی حرکت میدهند.

ارزش مهره ها : ارزش عددی هر مهره در ردیف بالا 5 و در ردیف پایینی معادل 1 است. هنگامی که مهره ها به سمت میله افقی حرکت داده شوند در واقع شمرده شده اند.

شمارش: هنگامی که 5 مهره در ردیف پایینی شمرده شود، نتیجه به ردیف بالا منتقل میشود. هنگامی که تمام مهره های بالا و پایین یک ستون شمرده شدند،نتیجه آن یعنی (10) به نزدیکترین ستون سمت چپ آن منتقل میشود.

آخرین ستون سمت راست، ستون یکان است، ستون بعدی دهگان، بعدی صدگان و الی آخر. محاسبات اعشاری به این ترتیب انجام میشود که فاصله بین دو ستون به عنوان ممیز تعیین میشود و تمام ستونهای سمت راست این فاصله اعداد اعشار و ستونهای سمت چپ
اعداد صحیح را نشان میدهند.

چرتکه در زمان ما


امروزه مغازه داران آسیایی همچنان از چرتکه برای محاسبات خود استفاده میکنند و استفاده از چرتکه در بسیاری از مدارس خاور دور تدریس میشود.برای آموزش محاسبات ریاضی به کودکان نابینا هم از چرتکه استفاده میشود و این بهترین وسیله جایگزین برای کاغذ و مداد است. علاوه بر آن در بسیاری از مدارس عادی نیز به جای ماشین حساب و یا انجام محاسبات روی کاغذ، از چرتکه استفاده میکنند و روش استفاده آنرا به دانش آموزان تعلیم میدهند.

+ نوشته شده در  جمعه دوم دی 1384ساعت 11:10  توسط محمد خداپرستان  | 

اعداد طبیعی

به مجموعه اعداد {... ،1،2،3،4،5،6،7} كه همانا زیرمجموعه اعداد بزرگتر یا مساوی 1 از اعداد صحیح می‌باشد ، مجموعه اعداد طبیعی می‌گوییم.
img/daneshnameh_up/3/34/natnum.JPG


مجموعه اعداد طبیعی را با نماد N نمایش می‌دهند.
مهمترین كاربرد اعداد طبیعی‌ شمردن است.
در ریاضیات نوین و علم
مبانی ریاضی اعداد طبیعی به صورت زیر تعریف می‌‌گردند :

مجموعه تهی‌ = {} = 0
{ {} } = {0} = 1
{ {{}} ، {} } = {0،1} = 2
{ { {{}} ، {} } ، { {} } ، {} }‌ = {0،1،2} = 3
.
.
.
{n = {0,1,2,3,…,n-1

طبق اصول كلاسیك
نظریه مجموعه‌ها یا ZFC ، تعاریف فوق خوش تعریف هستند.
طبق تعریف فوق اگر و اعداد طبیعی باشند ،‌ اگر و تنها اگر .
همان گونه كه می‌بينيد در اين تعريف عدد
صفر نيز عضو مجموعه اعداد طبيعي تعريف شده است.

خاصیت‌های اعداد طبیعی

  • مجموعه اعداد طبیعی شمارش‌پذير است.
  • مجموعه اعداد طبيعي خوش‌ترتيب است.
  • عمل جمع در مجموعه اعداد طبيعي بسته است.
  • عمل ضرب در مجموعه اعداد طبيعي بسته است.
+ نوشته شده در  جمعه دوم دی 1384ساعت 11:5  توسط محمد خداپرستان  | 

سری تیلور

در ریاضی سری عبارت است از مجموع جملات یک دنباله.به عبارت دیگر سری شماری از اعداد است که بین آنها عملگر جمع قرار گرفته است.

...+5+4+3+2+1


سریها بر دو نوعند:سریهای متناهی و نامتناهی؛که سریهای متناهی را می توان با اعمال ساده جبری محاسبه کرد،ولی برای محاسبه سریهای نامتناهی باید از آنالیز کمک گرفت.
به عنوان مثال سری زیر یک سری متناهی است.




سری نامتناهی، سری میباشد که جملات آن محدود نیست.
به این سری توجه نمایید:

این سری یک سری عددی نامتناهی میباشد.که در حالت کلی به صورت زیر نشان داده میشود.که به آن سری هندسی میگویند.


a را جمله اول و k را قدر نسبت سری می نامند.مجموع n جمله اول یک سری رابا نشان میدهند
در صورتی که به سمت یک عدد متناهی سیر کند آن را همگرا مینامند. در غیر این صورت به آن یک سری واگرا گویند.
حال به معرفی نوع دیگری از سریها به نام سریهای توانی می پردازیم:سریهایی را که جملات آن توابعی از متغیر x باشند را سریهای توانی گویند.و مجموعه مقادیر از x که به ازای آنها توابع موجود در سری تعریف شده و سری همگرا باشد را میدان همگرایی سری گویند.

هر سری تابعی به شکل
را یک سری توانی بر حسب میگویند.واضح است که جملات آن به فرم زیردر میآید:


حال به قضیه مهمی به نام قضیه تیلور میرسیم؛طبق این قضیه میتوان هر تابعی را که در یک بازه بینهایت بار مشتق پذیر باشد میتوان در این بازه به صورت یک سری توانی نامتناهی که به سری تیلور معروف است نشان داد.به عنوان مثال تابعی مانند را میتوان به صورت جمع توابعی بر حسب نوشت.
قبل از اینکه به توضیح کامل درباره این سریها بپردازیم.مثالی را در مورد این سریها بیان میکنیم.تابع sinx را در نظر بگیرید.این تابع را میتوان به صورت سری زیر بیان کرد:





لازم به توضیح است که در سری فوق c=0 در نظر گرفته شده است.

در اشکال زیر نمودار سری به ازای n=4؛ n=7 و نمودار sinx از راست به چپ رسم شده است.
همانطور که مشاهده میشود هر قدر تعداد جملات سری افزایش یابد شکل آن به یک منحنی تبدیل مشود.و اگر تا بینهایت رسم شکل ادامه یابد به شکل تابع sinدر مآید.
  img/daneshnameh_up/c/ce/hamin.jpg  
                                   
حال به شکل تابع sinx توجه کنید متوجه میشوید که با ادامه روند رسم اشکال به ازای nهای نامتناهی سرانجام به شکل sinx خواهیم رسید.
حال در زیر به تشریح کامل سریهای تیلور می پردازیم.



بحث جامع



img/daneshnameh_up/3/3d/Sintay.png

''
sin(x)
و تخمین تیلور(Taylor)، چند جمله‌ای های از درجه 1، 3، 5، 7، 9، 11 و 13.''


در ریاضیات، سری‌های تیلور از یک تابع f حقیقی (یا مختلط) که معمولا بطور نامحدود مشتق پذیر بوده و در یک فاصله باز (a-r و a+r ) تعریف شده، بصورت سریهای توانی زیر میباشد:
:

که در آن !n فاکتوریل n و (f (n)(a به معنی مشتق nام f در نقطه a میباشد.

اگر این سریها برای هر مقدار x در فاصله (a-r, a+r) همگرا بوده و مجموع آن برابر (f(x باشد، آنگاه تابع (f(x تحلیلی نامیده میشود. برای اطمینان از همگرایی سریها به (f(x، معمولا از تخمین برای جمله باقیمانده قضیه تیلور استفاده میشود. یک تابع تحلیلی است، اگر و فقط اگر بتوان آنرا بصورت یک سریهای توانی نمایش داد؛ ضرایب در سریهای توانی لزوما همان ضرایبی است که در فرمول سریهای تیلور داده شده است.
اگر a = 0 باشد، این سریها به نامسریهای مک‌لارین(Maclaurin) نامیده میشود.
اهمیت یک چنین سریهای توانی سه جانبه است. اول، مشتق گیری و انتگرال گیری سریهای توانی میتواند جمله به جمله انجام شود لذا بطور خاصی ساده است. دوم، یک تابع تحلیلی میتواند بطرز یکتایی به تابع هولومورفیک(holomorphic) تعریف شده روی یک صفحه باز در روی سطح مختلط، امتداد داده شود، که مکانیزم کامل تحلیل مختلط را فراهم مینماید. سوم، سریهای (کوتاه شده) میتواند برای محاسبه مقادیر تقریبی تابع استفاده شود.




img/daneshnameh_up/b/b1/Expinvsq.png.

تابع e-1/x² تحلیلی نیست، مقدار سریهای تیلور 0 است، درحلیکه مقدار تابع غیر صفر است.


توجه داشته باشید که مثالهایی برای توابع (f(x که دارای مشتقات محدود بوده و سریهای تیلور آنها همگرا بوده ولی برابر (f(x نیست، وجود دارد. برای مثال، برای تابع تعریف شده مقطع بصورت (f(x) = exp(−1/x² اگر x ≠ 0 وf(0) = 0،
تمام مشتفات در نقطه x = 0 صفر میباشند، بنابراین سریهای تیلور (f(x صفر بوده، و شعاع همگرایی آن محدود است، اگر چه تابع بطور یقین صفر نمی باشد. این آسیب، توابع ارزشمند- مختلط برای یک متغیر مختلط را مخدوش نمی نماید. توجه اینکه با نزدیک شدن z به سمت 0 در طول محور فرضی (exp(−1/z² به 0 نزدیک نمی شود.

بعضی از توابع را نمیتوان بصورت سریهای تیلور نوشت زیرا آنها دارای حالت استثنایی می باشند؛ در این حالتها، اغلب نیز میتوان به بست سریهایی دست یافت اگر بتوان از توانهای منفی متغیر x استفاده نمود؛ رجوع شود به سریهای لارنت«Laurent). برای مثال، (f(x) = exp(−1/x² را میتوان بر حسب سریهای لارنت نوشت.

قضیه پیشرفت اخیر برای یافتن سریهای تیلوری است که بتواند راهکاری برای معادلات دیفرانسیل باشد. این قضیه توسعه تکرار پیکارد«Picard) میباشد.

فهرست سریهای تیلور


چندین بست سریهای تیلور مهم بشرح ذیل میباشد. تمام این بستها نیز برای متغیرهای مختلط x صادق می باشد.

توابع اکسپتانسیلی و لگاریتم طبیعی:

:

:

سریهای هندسی:

:

قضیه فرعی-جزیی«Binomial» :

:

توابع مثلثاتی:

:

:

:

:

:

:

توابع هایپربولیک:

:

:

:

:

:



توابع لامبرت«Lambert's W):

:

اعداد Bk که در بستهای (tan(x و (tanh(x ظاهر می شوند همان اعداد برنولی ، (C(α,n در بستهای فرعی-جزیی ضرایب فرعی-جزیی بوده و Ek در بستهای (sec(x همان اعداد اولر می باشند.

چند بعدی


سریهای تیلور را به توابع با چند متغیر نیز تعمیم داد.

:
+ نوشته شده در  پنجشنبه یکم دی 1384ساعت 22:19  توسط محمد خداپرستان  | 

عدد نپرین

درمیان جمیع دستگاههای لگاریتمی ممکن(با پایه بزرگتر از 1) تنها دو دستگاه متداولند ، که یکی ز آنها لگاریتمهای طبیعی هستند که بر مبنای عدد نپرین بنا شده اند. ودر ریاضیات عالی تنها لگاریتمهایی که تقزیبا منحصرا به کار میروند لگاریتمهای طبیعی اند.

img/daneshnameh_up/6/69/euler.jpg
لئونارد اویلر




 

تاریخچه

Leonhard Euler 1707-83 پایه لگاریتم طبیعی (~ 2.71828)، اولین بار توسط لئونارد اویلر (Leonhard Euler 1707-83) یکی از باهوشترین ریاضیدانان تاریخ ریاضیات مورد استفاده قرار گرفت. در یکی از دست خطهای اویلر که ظاهرا" بین سالهای 1727 و 1728 تهیه شده است با تیتر Meditation on experiments made recently on the firing of cannon اویلر از عدی بنام e صحبت می کند. هر چند او رسما" این نماد را در سال 1736 در رساله ای بنام Euler's Mechanica معرفی میکند.


در واقع باید اعتراف کرد که اویلر کاشف یا مخترع عدد e نبوده است بلکه سالها قبل فردی بنام جان ناپیر (John Napier 1550-1617) در اسکاتلند هنگامی که روی لگاریتم بررسی می کرده است بحث مربوط به پایه طبیعی لگاریتم را به میان کشیده است. فراموش نکنید که شواهد نشان میدهد حتی در قرن هشتم میلادی هندی ها با محاسبات مربوط به لگاریتم آشنایی داشته اند.

در اینکه چرا عدد ~ 2.71828 بصورت e توسط اویلر نمایش داده شده است صحبت های بسیاری است. برخی e را اختصار exponential می دانند، برخی آنرا ابتدای اسم اویلر (Euler) می دانند و برخی نیز میگویند چون حروف a,b,c و d در ریاضیات تا آن زمان به کرات استفاده شده بود، اولر از e برای نمایش این عدد استفاده کرد. هر دلیلی داشت به هر حال امروزه اغلب این عدد را با نام Euler می شناسند.

کاربرد

اویلر هنگامی که روی برخی مسائل مالی در زمینه بهره مرکب در حال کار بود به عدد e علاقه پیدا کرد. در واقع او دریافت که در مباحث بهره مرکب، حد بهره به سمت عددی متناسب (یا مساوی در شرایط خاص) با عدد e میل میکند. بعنوان مثال اگر شما 1 میلیون تومان با نرخ بهره 100 درصد در سال بصورت مرکب و مداوم سرمایه گذاری کنید در پایان سال به رقمی حدود 2.71828 میلون تومان خواهید رسید.

در واقع در رابطه بهره مرکب داریم :




که در آن P مقدار نهایی سرمایه و بهره است، C مقدار اولیه سرمایه گذاری شده،r نرخ بهره، n تعداد دفعاتی است که در سال به سرمایه بهره تعلق می گیرد و t تعداد سالهایی است که سرمایه گذاری می شود.

در این رابطه اگر n به سمت بی نهایت میل کند - حالت بهره مرکب - فرمول را می توان بصورت زیر ساده کرد :



اویلر همچنین برای محاسبه عدد e سری زیر را پیشنهاد داد :




لازم است ذکر شود که اویلر علاقه زیادی به استفاده از نمادهای ریاضی داشت و ریاضیات امروز علاوه بر عدد e در ارتباط با مواردی مانند i در بحث اعداد مختلط، f در بحث توابع و بسیاری دیگر نمادها مدیون بدعت های اویلر است.

+ نوشته شده در  پنجشنبه یکم دی 1384ساعت 22:6  توسط محمد خداپرستان  | 

عدد پی

img/daneshnameh_up/5/56/pi1.jpg


عدد پی عددی است که در اکثر محاسبات ریاضی به نحوی حضور دارد و از مهمترین اعداد کاربردی در ریاضیات میباشدو آن را با نمایش میدهند. در هندسه اقلیدسی دو بعدی، این عدد را نسبت محیط دایره به قطر دایره و یا مساحت دایره ای به شعاع واحد تعریف میکنند.
در کتابهای جدیدتر این عدد را با آنالیز توابع مثلثاتی تعریف میکنند.به عنوان نمونه عدد پی رادو برابر کوچکترین مقدار مثبت x ،که به ازای آن cos(x)=0 میشود تعریف میکنند.


تاریخچه

بابلیان هنگامی که میخواستند مساحت دایره را حساب کنند،مربع شعاع آن را در 3 ضرب میکردند.البته لوحهای قدیمی تری از بابلیان وجود دارد که مشخص میکند آنها مقدار پی را برابر3.125 میدانستند.در مصر باستان مساحت دایره را با استفاده از فرمول محاسبه میکردند.(d قطر دایره در نظر گرفته میشد)که در نتیجه مقدار تقریبی عدد پی 3.1605 بدست میآید.

img/daneshnameh_up/d/d6/cir.jpg



اولین نظریه در مورد مقدار عدد پی توسط ارشمیدس بیان شد.این نظریه برپایه تقریب زدن مساحت دایره بوسیله یک شش ضلعی منظم
محیطیو یک شش ضلعی منظم محاطی استوار است.
ریاضیدانان اروپایی در قرن هفدهم به مقدار واقعی عدد پی نزدیکتر شدند.از جمله این دانشمندان جیمز گریگوری بود که برای پیدا کردن مقدار عدد پی از فرمول زیر استفاده کرد:


یکی از مشکلاتی که در این روش وجود دارد این است که برای پیدا کردن مقدار عدد پی تا 6 رقم اعشار باید پنج میلیون جمله از سری فوق را با هم جمع کنیم.
در اوایل قرن هجدهم ریاضیدان دیگری به نام جان ماشین فرمول گریگوری را اصلاح کرد که این فرمول امروزه نیز در برنامه های رایانه ای برای محاسبه عدد پی مورد استفاده قرار میگیرد.
این فرمول به صورت زیر است:



با استفاده از این فرمول یک انگلیسی به نام ویلیام شانکس مقدار عدد پی را تا 707 رقم اعشار محاسبه کرد،در حالیکه فقط 527رقم آن درست بود.
امروزه مقدار عدد پی با استفاده از پیشرفته ترین رایانه ها تا میلیونها رقم محاسبه شده است. و تعداد این ارقام هنوز در حال افزایش است.

+ نوشته شده در  پنجشنبه یکم دی 1384ساعت 22:3  توسط محمد خداپرستان  | 

بی نهایت

بی نهایت (از واژه لاتین "finitus" به معنی "محدود" گرفته شده – علامت ریاضی ∞) چیزی است که "محدود" نیست، که در آن هیچ محدودیتی زمانی و فضایی وجود ندارد.
در ریاضیات، با اصطلاح "انتقال-از-محدود(transfinite)" مشهور است؛ و چیزی است که فقط محدود نباشد، ولی ممکن است محدودیتهای دورتر از آن داشته باشد.


نگرش باستانی در مورد بی نهایت

نگرش باستانی از ارسطو آغاز شده است:

“... تفکر درباره یک عدد بزرگ همیشه ممکن است: چون تعداد دفعاتی که میتوان یک مقدار را به دو نیمه تقسیم کرد، بی نهایت است. بنابراین بی نهایت، امکان بالقوهای است که هرگز بالفعل نمی گردد؛ تعداد اجزایی را که می توان به دست آورد، همیشه از هر عدد معینی بیشتر است. Physics 207b8

به این مورد اغلب بی نهایت "بالقوه" اطلاق می شود، بهرحال دو نظریه در این مورد با هم ترکیب شده اند. یکی اینکه همیشه پیدا کردن چیزی هایی که تعداد آنها از هر عددی بیشتر باشد ممکن است، اگرچه آن چیزها عملا وجود نداشته باشند. دیگر اینکه ما می توانیم بدون محدودیتی، اعداد بالاتر از محدود را شمارش کنیم. مثلا "برای هر عدد صحیح n، یک عدد صحیح m (m > n) وجود دارد همچنین ( Phi(m". دومین نگرش را بصورت واضح تر در آثار نویسندگان قرون وسطایی مثل William of Ockham میتوان یافت:


:"Sed omne continuum est actualiter existens. Igitur quaelibet pars sua est vere existens in rerum natura. Sed partes continui sunt infinitae quia non tot quin plures, igitur partes infinitae sunt actualiter existentes."
:(هر زنجیره حقیقتا وجود دارد. بنابراین هر یک از اجزاء آن واقعا در طبیعت وجود دارد. اما اجزاء زنجیره نامحدود هستند چون هیچ عدد بزرگی نیست که عددی بزرگتر از آن نباشد، پس اجزاء نامحدود واقعا وجود دارند).



اجزاء از بعضی جهات واقعا وجود دارند. بهرحال، در این نگرش، هیچ بزرگی بی نهایتی نمی تواند یک عدد داشته باشد، چون هر عددی را که تصور کنیم، همیشه عددی بزرگتر از آن وجود دارد: "هیچ بزرگی (از لحاظ عددی) نیست که بزرگتر از آن نباشد". Aquinas همچنین بر ضد این نظریه که بی نهایت می تواند از هر جهت کامل یا کلی باشد بحث کرده است مرجع.

نگر ش های نوین آغازین

گالیله (در زمان بازداشت طولانی در خانه اش در Sienna بعد از محکومیتش توسط استنطاق مذهبی) اولین کسی بود که متوجه شد می توان مجموعه ای از بی نهایت عدد را بصورت تناظر یک به یک با یکی از زیر مجموعه های حقیقی آن در کنار هم قرارداد. (هر جزئی از این مجموعه که با کل آن برابر نیست). مثلا ما می توانیم "مجموعه" اعداد زوج را {...،8. 6. 4، 2} با اعداد طبیعی {...،4، 3، 2، 1} بصورت زیر جور کنیم:

:1, 2, 3, 4, ...
:2, 4, 6, 8, ...

با این استدلال مشخص می شود، اگرچه طبیعتا یک مجموعه که بخشی از مجموعه دیگر بوده، کوچکتر است(چون تمام اعضاء آن مجموعه را شامل نمی شود) از بعضی جهات هم اندازه اند. او معتقد بود این یکی از مشکلاتی است که وقتی ما میخواهیم "با ذهن محدود خود" یک امر نامحدود را درک کنیم، پیش می آید.

تا کنون آنگونه که من درک کردهام ما تنها می توانیم اینگونه استنباط کنیم که کل تمامی اعداد نامحدود است، اینکه تعداد مجذورات نامحدودند، و تعداد ریشه آنها نیز نامحدود می باشد، نه تعداد مجذورات کمتر از کل تمامی اعدادند و نه آن یکی بیشتر از دیگری است؛ و بالاخره خصوصیات "برابر"، "بزرگتر"، و "کوچکتر" قابل اعمال به بی نهایت نیستند، بلکه فقط قابل اعمال به کمیات محدود اند در دو علم جدید 1938 .

این نظریه که اندازه را می توان بوسیله تطابق یک به یک سنجید، امروزه به نام اصل هیوم معروف است، اگرچه هیوم نیز همانند گالیله معتقد بود که این اصل نمی تواند در مورد مجموعه های نا محدود بکار رود.

Locke، لوک نیز همانند فلاسفه تجربه گرا نیز بر این باور بود که ما نمی توانیم هیچ نظر مناسبی درباره بی نهایت داشته باشیم. آنها عقیده داشتند تمامی نظرات ما از نمود احساس یا تصورات سرچشمه می گیرد، و چون تمامی حواس و خیالات ما ذاتا محدودند، به همین دلیل دایره افکار و عقاید ما محدود خواهند بود. نظر ما درباره بی نهایت صرفا منفی یا شخصی است.

:"اجازه ندهیم هر اندازه که عقیده مثبت در ذهن خود نسبت به هر مکان، مدت یا عددی داریم شدت یابد، چون بهرحال آنها محدودند؛ اما وقتی یک باقیمانده پایان ناپذیر را فرض می کنیم، که تمامی قیود را از آن برمیداریم، و به ذهن خود اجازه تفکرات تصاعدی بی پایان را می دهیم، بی آنکه عقیده خود را کامل نماییم،آنجاست که ما نظر خود را در مورد بی نهایت خواهیم داشت؟ تازه وقتی فکر خود را درباره فضا یا مدت بینهایت شکل میدهیم، آن نظر بسیار مبهم و پیچیده است، زیرا آن از دو بخش بسیار متفاوت ساخته شده است، اگر متناقض نباشند. برای کمک به تنظیم یک طرح در مورد هر فضا یا عددی، به بزرگی تصورمان، کافی است بسادگی ذهن را راحت نموده و تفکرمان را در باره آن طرح متوقف سازیم؛ که برخلاف عقیده در باره بینهایت است، که عبارتست از تصور تصاعدی بی پایان." (Essay, II. xvii. seven. ، تاکید نویسنده)

بطور بسیار عالی، توماس هابز فوق-تجربه گرا، سعی نمود تا از ایده بینهایت بالقوه در روشنایی کشف شکل «Gabriel's horn) بوسیله توریچیلی Evangelista Torricelli دفاع نماید، شکلی که سطح نامحدود داشته، ولی حجم آن محدود است.

ادراک ریاضی


درک ریاضی مدرن از بینهایت در اواخر قرن نوزدهم توسط کارهایGeorg Cantor،
Gottlob Frege، Richard Dedekind] و دیگران با استفاده از ایده مجموعه ها، توسعه یافت.برخورد آنها در اصل به قبول ایده ««تناظر یک به یک بعنوان یک استاندارد برای مقایسه سایز مجموعه ها بود، و رد کردن نظر گالیله (که از اقلیدس ناشی شده بود) مبنی بر اینکه کل نمیتواند هم اندازه جزء باشد. یک مجموعه نامحدود را میتوان بصورت ساده طوری تعریف نمود که هم اندازه حداقل یکی از اجزاء "مناسب" آن باشد.

بدینسان کانتور نشان داد که مجموعه های بینهایت میتوانند اندازه های متفاوت داشته باشند، با تمایز بین مجموعه های بینهایت قابل شمارش و بینهایت غیر قابل شمارش، و یک فرضیه اعداد کاردینال را حول این مطلب توسعه داد. نظر او غالب گردید و ریاضیات مدرن عملا بینهایت را پذیرفت. سیستمهای اعداد توسعه یافته مشخصی، مانند اعداد حقیقی، اعداد معمولی(محدود) و اعداد نامحدود را با سایزهای مختلف، متحد می نمایند.

وقتی سروکارمان با مجموعه های نامحدود می افتد، بصیرت کسب شده ما از مجموعه های محدود ازکار میافتد. یک مثال برای این پارادوکس گراند هتل هیلبرت است.

یک سوال فریبکارانه این است که آیا بینهایت عملی در کیهان مادی وجود دارد: آیا تعداد ستاره ها نامحدود است؟ آیا گیهان دارای حجم نامحدود است؟ آیا فضا "تا ابد ادامه" دارد؟ این یک سوال باز مهم در کیهان شناسی است. توجه داشته باشید که سوال از نامحدود بودن بصورت منطقی، غیر از سوال در مورد داشتن مرز می باشد. سطح دو بعدی زمین، برای مثال، محدود است، در حالیکه هیج مرزی ندارد. با راه رفتن / دریانوردی / رانندگی به اندازه کافی طولانی در مسیر مستقیم، شما درست به همان نقطهای که شروع کرده بودید، باز می گردید. کیهان، حداقل در مبادی و اصول، ممکن است بر اساس یک اصل مشابه عمل نماید؛ اگر شما با فضاپیمای خود به اندازه کافی طولانی در مسیر مستقیم و روبروی خود پرواز کنید، شما اتفاقا و بصورت ناگهانی دوباره از همان نقطهای که از آن شروع کرده بودید، می گذرید.

نظریات مدرن

مباحثه مدرن درباره بینهایت امروزه بصورت بخشی از تئوری مجموعه و ریاضیات مرد توجه قرار گرفته است، و کلا فلاسفه از بحث درباره آن احتراز می کنند. Wittgenstein یک استثناء بوده است، کسی که حملات مهیجی را علیه بدیهیات تئوری مجموعه، و ایده بینهایت عملی، در "اواسط عمر خود" انجام داد.

بینهایت امروزه به انواع مجوعه ها نامحدود زیادی تقسیم شده است، مانند aleph-null، یک سری قابل شمارش از اعداد طبیعی، و beth-one، یک سری غیر قابل شمارش مانند تعداد کمانهای موجود در یک دایره یا تعداد نقاط روی یک خط، و یک تعداد نامحدود از چیزهای دیگر.

:"آیا معادله m = 2n گروه تمام اعداد را با زیرگروههایش مرتبط می کند؟ خیر. آن هر عدد دلخواهی را با دیگری مرتبط می سازد، و بدین ترتیب ما به گروههای زوج نامحدود وارد می شویم، که هرکدام به دیگری مرتبط میباشد، ولی هرگز به گروه یا زیرگروهی مرتبط نیستند. هیچیک از این دو، یکجوری خودش یا دیگر گونه از یک زوج گروه، فرآیند نامحدود نمی باشند ... در موهومات که m = 2n یک گروه را با زیرگروههایش مرتبط می سازد، هنوز ما صرفا یک حالت از دستور زبان دوپهلو را خواهیم داشت." (Philosophical Remarks ? 141, cf Philosophical Grammar p.465)

برخلاف تجربه گراهای سنتی، او معتقد بود بینهایت یک جوری در درک تجربی مسلم می باشد.

:"من میتوانم وجود هر تجربه محدودی را در فضا مشاهده کنم ... ما ضرورت بینهایت را در فضا در ...کوچکترین جزء آن تشخیص میدهیم". " زمان با همان احساس نامحدود است همانطور که فضای سه بعدی جرکت و منظر نامحدود است، اگرچه در حقیقت دورترین جایی که می توانم ببینم، دیوارهای اتاقم باشد."

:" آنچه درباره بی پایانی، نامحدود است، فقط بی پایانی خودش است ..."

مطلق


سوال دیگر این است که آیا ادراک ریاضی از بینهایت ارتباطی با ادراک مذهبی از خدا دارد؟ این سوال هم کانتور را، با عقیده اش در مورد بینهایت مطلق که با خدا برابر قرارداده شده است، و هم Kurt Godel را با اثبات ؟؟؟ Godel's ontologicalاش از وجود یک نهاد که او آنرا به خدا وابسته کرد، مخاطب خود قرار داده است.

+ نوشته شده در  پنجشنبه یکم دی 1384ساعت 21:41  توسط محمد خداپرستان  | 

قضیه فیثاغورث

در علم ریاضی، قضیه فیثاغورث، یک رابطه در فضای اقلیدسی بین اضلاع یک مثلث قائم الزاویه را بیان میکند. اگر چه این قضیه قبل از آن که فیثاغورث آن را بیان کند توسط بابلیان و هندوها به کار برده می شد ولی به نام او ثبت گردید

قضیه

 

img/daneshnameh_up/6/62/Pythagorean.png


فرض کنید سه مربع روی اضلاع یک مثلث قائم الزاویه،که طول اضلاع قائم آن a وb و طول وتر آن c میباشد؛مطابق شکل زیر می سازیم


این قضیه به ما توضیح میدهد که جمع مساحتهای دو مربع ساخته شده روی دو ضلع قائم یک مثلث قائم الزاویه با مساحت مربع ساخته شده روی وتر برابر است.

مثلث قائم الزاویه مثلثی است که دارای یک زاویه قائم میباشد و به ضلعی که روبروی این زاویه در مثلث قرار دارد، وتر میگویند.
در شکل اضلاع زاویه قائم با aوb و وتر با c نشان داده شده است.
بیان دیگر قضیه به این صورت است که در یک مثلث قائم الزاویه مجموع مربعات دو ضلع قائم با مجذور وتر برابر است.

جالب است بدانید که بیش از چهل روش هندسی برای اثبات این قضیه وجود دارد.


 

اثبات قضیه


 

img/daneshnameh_up/5/56/Pythagorean_proof.png


می توان با توجه به شکل روبرو اثبات هندسی قضیه را به راحتی درک کرد.
در هر دو شکل مربعی به ضلع a+b داریم.در شکل سمت راست چهار نمونه از مثلث قائم الزاویه دور مربع ساخته شده بروی وتر وجود دارد. و هر چهار مثلث دارای مساحت یکسان می باشند. با چند جابجایی در شکل سمت راست به شکل سمت چپ می رسیم.در این شکل همان چهار مثلث قبلی وجود دارند ولی مربعی که اضلاع آن به c بود به دو مربع به اضلاع a,b تبدیل شده است، که همان قضیه فیثاغورث را نشان میدهد




img/daneshnameh_up/b/b5/1.gif





شکل روبرو نیز نشان دهنده روش دیگری از اثبات هندسی می باشد:







+ نوشته شده در  پنجشنبه یکم دی 1384ساعت 21:33  توسط محمد خداپرستان  | 

عدد طلائی

عدد طلائی عددیست ، تقریباَ مساوی 1.618 ، که خواص جالب بسیاری دارد ، و بعلت تکرار زیاد آن در هندسه ، توسط ریاضیدانان کهن مطالعه شده است . اشکال تعریف شده با نسبت طلائی ، از نظر زیبائی شناسی در فرهنگهای غربی دلپذیر شناخته شده، چون بازتابنده خاصیتی بین تقارن و عدم تقارن است.

دنیای اعداد بسیار زیباست و شما می توانید در آن شگفتیهای بسیاری را بیابید. در میان اعداد برخی از آنها اهمیت فوق العاده ای دارند، یکی از این اعداد که سابقه آشنایی بشر با آن به هزاران سال پیش از میلاد میرسد عددی است بنام "نسبت طلایی" یا Golden Ratio. این نسبت هنوز هم بارها در هنر و طراحی استفاده می شود . نسبت طلائی به نامهای برش طلائی ، عدد طلائی ، نسبت الهی نیز شناخته می شود و معمولاَ با حرف یونانی ، مشخص می شود.


 

تعریف

img/daneshnameh_up/f/fc/golden1-0.gif
نحوه محاسبه نسبت عدد طلائی


پاره خطی را در نظر بگیرید و فرض کنید که آنرا بگونه ای تقسیم کنید که نسبت بزرگ به کوچک معادل نسبت کل پاره خط به قسمت بزرگ باشد. به شکل توجه کنید. اگر این معادله ساده یعنی را حل کنیم (کافی است بجای b عدد یک قرار دهیم بعد a را بدست آوریم) به نسبتی معادل تقریبا
1.61803399 یا 1.618 خواهیم رسید.

کاربردها

img/daneshnameh_up/d/d2/goldenh.gif
برش اهرام و نسبت طلائی


شاید باور نکنید اما بسیاری از طراحان و معماران بزرگ برای طراحی محصولات خود امروز از این نسبت طلایی استفاده می کنند. چرا که بنظر میرسد ذهن انسان با این نسبت انس دارد و راحت تر آنرا می پذیرد. این نسبت نه تنها توسط معماران و مهندسان برای طراحی استفاده می شود. بلکه در طبیعت نیز کاربردهای بسیاری دارد.
برش اهرام و نسبت طلایی اهرام مصر یکی از قدیمی ترین ساخته های بشری است که در آن هندسه و ریاضیات بکار رفته شده است. مجموعه اهرام Giza در مصر که قدمت آنها به بیش از 2500 سال پیش از میلاد می رسد یکی از شاهکارهای بشری است که در آن نسبت طلایی بکار رفته است. به این شکل نگاه کنید که در آن بزرگترین هرم از مجموعه اهرام Giza خیلی ساده کشیده شده است.

مثلث قائم الزاویه ای که با نسبت های این هرم شکل گرفته شده باشد به مثلث قائم مصری یا Egyptian Triangle معروف هست و جالب اینجاست که بدانید نسبت وتر به ضلع هم کف هرم معادل با نسبت طلایی یعنی دقیقا" 1.61804 می باشد. این نسبت با عدد طلایی تنها در رقم پنجم اعشار اختلاف دارد یعنی چیزی حدود یک صد هزارم. باز توجه شما را به این نکته جلب می کنیم که اگر معادله فیثاغورث را برای این مثلث قائم الزاویه بنویسم به معادله ای مانند phi2=phi+b2 خواهیم رسید که حاصل جواب آن همان عدد معروف طلایی خواهد بود. (معمولا" عدد طلایی را با phi نمایش می دهند)

طول وتر برای هرم واقعی حدود 356 متر و طول ضلع مربع قاعده حدودا" معادل 440 متر می باشد بنابر این نسبت 356 بر 220 (معادل نیم ضلع مربع) برابر با عدد 1.618 خواهد شد.

عدد طلائی از دیدگاه کپلر

کپلر (Johannes Kepler 1571-1630) منجم معروف نیز علاقه بسیاری به نسبت طلایی داشت بگونه ای که در یکی از کتابهای خود اینگونه نوشت : "هندسه دارای دو گنج بسیار با اهمیت می باشد که یکی از آنها قضیه فیثاغورث و دومی رابطه تقسیم یک پاره خط با نسبت طلایی می باشد. اولین گنج را می توان به طلا و دومی را به جواهر تشبیه کرد".

تحقیقاتی که کپلر راجع به مثلثی که اضلاع آن به نسبت اضلاع مثلث مصری باشد به حدی بود که امروزه این مثلث به مثلث کپلر نیز معروف می باشد.همچنین کپلر پی به روابط بسیار زیبایی میان اجرام آسمانی و این نسبت طلایی پیدا کرد.

 

+ نوشته شده در  پنجشنبه یکم دی 1384ساعت 21:18  توسط محمد خداپرستان  | 

هنریک آبل


آبل، ریاضیدان نروژی بود که در شهر فینوی متولد شد.در سال 1815، او وارد مدرسه کلیسای جامع کریستینا(اسلو امروزی) شد. سه سال بعد نشانه های نبوغ ریاضی در او ظاهر شد در همین زمان پدر او که یک کشیش فقیر بود، درگذشت و خانواده اش را در کمال فقر و بی چیزی، تنها گذاشت اما یک مقرری ناچیز که از پدر به جا مانده بود، اجازه می داد تا آبل وارد دانشگاه کریستینا شود.

اولین کار برجسته او اثبات امکان حل معادلات درجه پنجم بوسیله رادیکال بود. این تحقیق در سال 1824 برای اولین بار منتشر شد. و جزئیات بیشتری از آن در سال 1826 در مجله کرل منتشر گردید. او در سال 1825 به آلمان رفت و در حدود 6 ماه در برلین ماند. و در آنجا با آگوست کرل ریاضیدان آلمانی آشنا شد. او در همین موقع دست به انتشار مجله ریاضی زد، این کار آبل را دلگرم کرد تا دست به یک ریسک برای رسیدن به موفقیت بزند. بنابراین از برلین به فرایبورک رفت و در آنجا به پژوهش در مورد نظریه توابع جبری پرداخت.                                                          

                                                           
در سال 1826 به پاریس رفت و در طول اقامت ده ماهه اش، ریاضیدان برجسته فرانسوی را ملاقات کرد اما (استقبال آنها از کار و پژوهش او، بسیار ناچیز بود. فروتنی و تواضع او باعث شد تا او نتواند به طور گسترده تحقیقات خود را ارائه نماید و به علت بی پولی و نداشتن آزادی عمل نتوانست به موفقیتی دست یابد و سرانجام به نروژ بازگشت. در بازگشت به نروژ مقداری از وقت خود را صرف تدریس در دانشگاه کریستینا کرد. در آوریل 1829 پست استادی برای او در دانشگاه برلین پیشنهاد شد ولی نامه حاوی این مطلب 2 روز بعد از مرگ او به علت سل به مقصد رسید. او در موقع مرگ تنها 26 سال داشت.

آبل کارهای مهمی را در زمینه جبر انجام داد. آبل عهده دار توسعه های اساسی نظریه توابع جبری است و مهمترین کار او نیز همین بود. عبارت آبلین(مانند گروه آبلی در جبر) نیز از نام او گرفته شده است.

+ نوشته شده در  دوشنبه بیست و هشتم آذر 1384ساعت 16:26  توسط محمد خداپرستان  | 

پی یردو فرما

زندگی

img/daneshnameh_up/9/91/ferma.gif

پیر فرما (Pierre de Fermat) در سال 1601 در نزدیکی مونتابن (Montauban) فرانسه متولد شد. او فرزند یک تاجر چرم بود و تحصیلات اولیه خود را در منزل گذراند. سپس برای احراز پست قضاوت به تحصیل حقوق پرداخت و بعد ها بعنوان مشاور در پارلمان محلی شهر تولوز (Toulouse) انتخاب شد.
او باوجود علاقه بسیاری که به ریاضیات داشت هرگز بصورت رسمی و حرفه ای به این علم نپرداخت اما با این حال بسیاری او را بزرگترین ریاضی دان قرن هفدهم می دانند. او در سن 64 سالگی در شهر کاستر (Caster) در گذشت.


قضیه ها

فرما برای تفریح به ریاضیات می پرداخت و امروزه بسیاری از اکتشافت او بعنوان مهمترین قضایا در ریاضیات مطرح می باشند. زمینه های مورد علاقه او در ریاضیات بیشتر شامل نظریه اعداد، استفاده از هندسه تحلیلی در مقادیر بینهایت کوچک یا بزرگ و فعالیت در زمینه احتمالات بود.کارش در مورد مماسها الهام بخش نیوتن در طرح حساب دیفرانسیل و انتگرال شد.اصل مینیمم سازی فرما در اپتیک ،نتایج عمیقی در سراسر فیزیک بعد از او داشت.بالاتر از تمام اینها فرما به خاطر کارهایش در نظریه اعداد،در یادها مانده است.



از جمله قضایای زیبای او که به قضیه کوچک فرما معرف شده است می توان به این مورد اشاره کرد. اگر p یک عدد اول باشد و a یک عدد طبیعی در آنصورت بر p قابل قسمت خواهد بود.
اثبات این قضیه از طریق استقرای ریاضی بسیار ساده است. این قضیه حالت عمومی تر دو قضیه دیگر در ریاضیات هست یکی قضیه ای منسوب به اویلر (Euler) و دیگری قضیه ای معروف به همنهشتی چینی (Chinese Hypothesis).


از دیگر قضایایی که او در طول زندگی خود ارائه کرد می توان به موارد زیادی اشاره کرد از جمله : "اگر a و b و c اعداد صحیح باشند و باشد در آنصورت ab نمی تواند مربع یک عدد صحیح باشد." اولین بار برای این قضیه لاگرانژ (Lagrange) راه حلی استادانه ارائه کرد.
شاید جنجالی ترین قضیه ای که حتی خود فرما برای آن توضیح یا اثباتی ارائه نکرده است قضیه آخر او باشد که اینگونه است:

معادله در دامنه اعداد صحیح برای مقادیر بزگتر از 2 پاسخ ندارد.

این معادله ساده و فریبنده سالهای سال برای ریاضیدانان دردسر بزرگی بوده است چرا که فرما در حاشیه یکی از یادداشت های خود نوشته بود : "من برای این قضیه اثبات بسیار حیرت آوری (Marvelous) دارم." اما متاسفانه هرگز در میان نوشته های او اثبات این قضیه پیدا نشد و تاریخ همواره در شک و شبهه مانده است که آیا او این قضیه را اثبات کرده است یا خیر.
با وجود آنکه این قضیه تاکنون مورد علاقه بسیاری از ریاضی دانان بوده و بسیاری هم به ظاهر برای آن راه حل ارائه کرده اند اما بنظر می رسد هیچکدام از آنها استدلالهای کاملی نبوده و در نهایت این قضیه بنظر اثبات نشدنی می آید.

+ نوشته شده در  دوشنبه بیست و هشتم آذر 1384ساعت 16:17  توسط محمد خداپرستان  | 

انتگرال

انتگرال

در حساب دیفرانسیل و انتگرال ، از انتگرال یک تابع برای عمومیت دادن به محاسبه مساحت ، حجم ، جرم یک تابع استفاده می شود. فرایند پیدا کردن جواب انتگرال را انتگرال گیری گویند.البته تعاریف متعددی برای انتگرال گیری وجود دارد ولی در هر حال جواب مشابه ای از این تعاریف بدست می آید. انتگرال یک تابع مثبت پیوسته در بازه (a,b) در واقع پیدا کردن مساحت بین خطوط x=0 , x=10 و خم منفی F است . پس انتگرال F بین a و b در واقع مساحت زیر نمودار است. اولین بار لایب نیتس نماد استانداری برای انتگرال معرفی کرد و به عنوان مثال انتگرال f بین a و b رابه صورت نشان می دهند علامت ،انتگرال گیری از تابع f را نشان می دهند ،aو b نقاط ابتدا و انتهای بازه هستند و f تابعی انتگرال پذیر است و dx نمادی برای متغیر انتگرال گیری است.

img/daneshnameh_up/9/96/graph_integral1-1.jpg
انتگرال یک تابع مساحت زیر نمودار آن تابع است.


از لحاظ تاریخی dx یک کمیت بی نهایت کوچک را نشان می دهد. هر چند در تئوریهای جدید، انتگرال گیری بر پایه متفاوتی
پایه گذاری شده است به عنوان مثال تابع f را بین x=0 تا x=10 در نظر بگیرید ،مساحت زیر نمودار در واقع مساحت مستطیل خواهدبود که بین x=0 ،x=10 ،y=0 ،y=3 محصور شده است یعنی دارای طول 10 و عرض 3است پس مساحت آن برابر 30 خواهد بود .

اگر تابعی دارای انتگرال باشد به آن انتگرال پذیر گویند و تابعی که از انتگرال گیری از یک تابع حاصل می شود تابع اولیه گویند . اگر انتگرال گیری از تابع در یک محدوده خاص باشند به آن انتگرال معین گویند که نتیجه آن یک عدد است ولی اگر محدوده آن مشخص نباشد به آن انتگرال نامعین گویند.

محاسبه انتگرال


اکثر روش های اساسی حل انتگرال بر پایه قضیه اساسی حساب دیفرانسیل و انتگرال بنا نهاده شده است که بر طبق آن داریم:

1.f تابعی در بازه (a,b) در نظر می گیریم .
2.پاد مشتق f را پیدا می کنیم که تابعی است مانند f که و داریم:
3.قضیه اساسی حساب دیفرانسیل و انتگرال را در نظر می گیریم:



بنابراین مقدار انتگرال ما برابر خواهد بود.

به این نکته توجه کنید که انتگرال واقعاً پاد مشتق نیست (یک عدد است) اما قضیه اساسی به ما اجازه می دهد تا از پاد مشتق برای محاسبه مقدار انتگرال استفاده کنیم .
معمولاً پیدا کردن پاد مشتق تابع f کار ساده ای نیست و نیاز به استفاده از تکنیکهای انتگرالگیری دارد این تکنیکها عبارتند از :


روش هایی دیگر نیز وجود دارد که برای محاسبه انتگرالهای معین به کار می رود همچنین می توان بعضی از انتگرال ها با ترفند هایی حل کرد برای مثال می توانید به انتگرال گاوسی مراجعه کنید .

تقریب انتگرالهای معین

img/daneshnameh_up/0/02/integ.gif
محاسبه سطح زیر نمودار بوسیله مستطیل هایی زیر نمودار.
هر چه قدرعرض مستطیل ها کوچک میشوندمقدار دقیق تری
از مقدار انتگرال بدست میآید.



انتگرال هایی معین ممکن است با استفاده از روش های انتگرال گیری عددی ،تخمین زده شوند.یکی از عمومی ترین روش ها ،روش مستطیلی نامیده می شود در این روش ناحیه زیر نمودار تابع به یک سری مستطیل تبدیل شده و جمع مساحت آنها نشان دهنده مقدار تقریبی انتگرال است.
از دیگر روش هایی معروف برای تخمین مقدار انتگرال رو سیمپسون و روش ذوزنقه ای است. اگر چه روش های عددی مقدار دقیق انتگرال را به ما نمی دهند ولی در بعضی از مواقع که انتگرال تابعی قابل حل نیست یا حل آن مشکل است کمک زیادی به ما می کند .

تعریف های انتگرال


از مهم ترین تعاریف در انتگرال می توان از انتگرال ریمان و انتگرال لبسکی(lebesgue) است. انتگرال ریمان بوسیله برنهارد ریمان در سال 1854 ارئه شد که تعریف دقیقی را از انتگرال ارائه می داد تعریف دیگر را هنری لبسکی ارائه داد که طبق این تعریف شرایط تعویض پذیری حد و انتگرال با شرط مساوی ماندن عبارت، ارائه می کرد.
از دیگر تعاریف ارائه شده در زمینه انتگرال میتوان به انتگرال riemann-stieltjes اشاره کرد. پس به طور خلاصه سه تعریف زیر از مهمترین تعاریف انتگرال میباشند:


+ نوشته شده در  دوشنبه بیست و هشتم آذر 1384ساعت 14:3  توسط محمد خداپرستان  | 

در ریاضیات، مفهوم حد، برای بیان رفتار یک تابع مورد استفاده قرار می گیرد و به بررسی این رفتار در نقاط روی صفحه و یا در بی نهایت می پردازد. حد در حساب دیفرانسیل و انتگرال و نیز در آنالیز ریاضی برای تعریف مشتق و نیز مفهوم پیوستگی مورد استفاده قرار می گیرد.

حد تابع در یک نقطه


اگر یک تابع و یک عدد حقیقی باشد و داشته باشیم: آن گاه این فرمول را چنین میخوانیم << حد تابع f وقتی که x به سمت می رود برابر L است>> توجه کنید که این عبارت حتی اگر
باشد نیز می تواند درست باشد. در عوض تابع در نقطه c تعریف نشده است.حالی مثالی را ذکر می کنیم:تابع زیر را در نظر میگیریم




حال متغیر x را به عدد2 نزدیک می کنیم و خواهیم دید که مقدار تابع به 0.4 نزدیک می شود. در این مورد مشاهده می شود که در این صورت گزینه تابع در نقطه X=C دارای
پیوستگی است. اما همیشه این مورد برقرار نیست.

img/daneshnameh_up/6/6d/limits1.gif
منحنی زرد رنگ در همه جا پیوسته بوده و دارای حد است ولی سه شکل دیگر نمایانگر انواع ناپیوستگی یک نمودار در یک نقطه است



 

تعریف مجرد حد:


فرض کنید f تابعی باشد روی یک بازه باز که شامل نقطه C است و فرض کنید L یک عدد حقیقی باشد در این صورت را به صورت زیر تعریف میکنیم:
به ازای هروجود دارد یک که برای هر x دلخواه اگر آنگاه نتیجه بگیریم:

حد توابع در بی نهایت

حد یک تابع فقط در نزدیکی اعداد متناهی تعریف نمی شود بلکه ممکن است متغیر توابع وقتی که بی نهایت نزدیک می شود دارای حد باشند.
به عنوان مثال در تابع خواهیم داشت:

  • f(100) = 1.9802
  • f(1000) = 1.9980
  • f(10000) = 1.9998

مشاهده میشود که هر چه قدر x بزرگتر میشود ،مقدار تابع به عدد 2 نزدیکتر میشود .در واقع داریم:


حد یک دنباله

حد یک دنباله مانند 1.79, 1.799, 1.7999,... را در نظر بگیرید. مشاهده می کنیم که این دنباله به عدد 1.8 نزدیک می شود.
به طور کلی فرض می کنیم یک دنباله از اعداد حقیقی باشد. می گوییم حد این دنباله برابر L است و می نویسیم: اگر و تنها اگر برای هر یک عدد طبیعی مانند m باشد که برای هر n>m داشته باشیم
باید توجه کرد که ما می توانیم مقدار . را به عنوان فاصله بین و L در نظر بگیریم به چنین دنباله هایی که حد آنها به یک عدد متناهی میل می کند همگرا گویند و گرنه به آن واگرا گویند.

+ نوشته شده در  دوشنبه بیست و هشتم آذر 1384ساعت 13:54  توسط محمد خداپرستان  | 

تابع

تابع

در ریاضیات، تابع رابطه ای است که رابطه بین اعضای یک مجموعه را با اعضایی از مجموعه ای دیگر (شاید یک عضو از مجموعه) را بیان می کند. نظریه درباره تابع یک پایه اساسی برای خیلی از شاخه های ریاضی به حساب می آید.
مفاهیم تابع، نگاشت و تبدیل معمولاً مفاهیم مشابه ای هستند. عملکرد ها معمولاً دو به دو بین اعضای تابع وارد عمل می شوند.

تعریف:


تابع یک قاعده ای است که ورودیهایی را می گیرد و خروجیهایی را به ما پس می دهد. مثالهایی را ذکر می کنیم.

  • هر شخص دارای هشت رنگ مورد علاقه دارند (قرمز، نارنجی، زرد، سبز، آبی، بنفش، نیلی، صورتی) رنگ مورد علاقه یک تابع انسانی است. برای مثال علی رنگ قرمز را دوست دارد. در حالی که کیارش رنگ بنفش را دوست دارد.در اینجا، ورودی یک مشخص است ولی خروجی یکی از هشت رنگ است. باید به نکته توجه کرد که چند شخص می توانند یک رنگ را انتخاب کنند.
  • یک سنگ از طبقات مختلف یک ساختمان رها می شود. این سنگ در 2 ثانیه، 2 طبقه را پائین می رود و در 4 ثانیه، 8 طبقه را پایین می رود. در اینجا، طبقات به عنوان ورودی و تعداد ثانیه ها به عنوان خروجی به حساب می آیند.

قاعده تعریف یک تابع می تواند به وسیله یک فرمول، رابطه و یا یک جدول ساده که ورودیها و خروجیها را در برابر هم قرار می دهد، باشد.
در توابع، ورودیها به عنوان متغیر تابع و خروجیها به عنوان ارزش تابع شناخته می شوند.
یک نمونه از توابع، توابعی است که رابطه متغیر تابع با ارزش تابع به صورت یک فرمول بیان می شود. و ارزش تابع از جایگزین متغیر در فرمول بدست می آید.
به عنوان مثال تابع


بیان می کند که ارزش تابع برابر است با مربع هر عددی مانند x

img/daneshnameh_up/b/b5/function-pic2.jpg



 

تعریف روی مجموعه ها

یک تابع رابطه‌ای منحصر به فرد است که یک عضو از مجموعه ای را با اعضای مجموعه‌ای دیگر مرتبط میکند.
تمام روابط موجود بین دو مجموعه نمی تواند یک تابع باشد برای روشن شدن موضوع، مثالهایی در زیر ذکر می کنیم:

img/daneshnameh_up/a/af/122.jpg




 

  • این رابطه یک تابع نیست چون در آن عنصر 3، با دو عنصر ارتباط دارد. که این با تعریف تابع متناقص است چون برای یک عنصر از مجموعه، دو عنصر در مجموعه موجود است






 

img/daneshnameh_up/c/c5/23.gif




 

  • این رابطه یک تابع یک به یک است. چون به ازای هر x یک y وجود دارد







 

خواص توابع


توابع می توانند:


 

توابع چند متغیره:

یک تابع ممکن است بیشتر از یک متغیر داشته باشد برای مثال یک تابع از f است که دارای سه پارامتر x,y,z است که یک ارزش را برای تابع تولید می کنند. از توابع چند متغیره می توان به قانون جاذبه نیوتن اشاره کرد که در آن دو جرم با متغیر و و نیز یک متغیر برای فاصله هر جرم به نام در آن وجود دارد.



با مقدار دهی به سه پارامتر فوق مقدار تابع F محاسبه خواهد شد.

+ نوشته شده در  دوشنبه بیست و هشتم آذر 1384ساعت 13:52  توسط محمد خداپرستان  | 

اصل درخت(گراف)

در نظریه گراف، یک درخت گرافی است که هر دو راس آن بوسیله دقیقاً یک یال به هم متصل شده اند، یک جنگل گرافی است که دو راس آن با بیشتر از یک راس به هم متصل اند. یک جنگل در واقع از اتصال، مجموعه ای از درخت ها به وجود می آید.

تعریف ها:

یک درخت از شرایط زیر پیروی می کند.
  • در آن هیچ مدار یا حلقه ای موجود نیست.
  • درخت یک گراف همبند است.
  • با حذف یک یال از درخت، دیگر آن گراف یک درخت نخواهد بود.
  • هر دو راس در یک درحت بوسیله مسیر منحصر به فرد به هم متصل می شوند.

اگر یک جنگل با n راس باشد آن گاه از شرایط زیر پیروی می کند:
  • T یک درخت است.
  • T مداری ندارد و n-1 یال دارد.
  • T همبند است و n-1 یال دارد.
  • هر دو راس T با مسیر منحصر به فرد به هم متصل می شوند.
  • T مداری ندارد و با افزودن یگ یال جدید دقیقاً یک مدار بوجود می آید.

مثال:


در شکل درختی با 6 راس و 5 یال وجود دارد مقدار یالها برابر 5 = 1- 6 است. و بین دو راس 2 و 6 دقیقاً یک مسیر وجود دارد که عبارت است از 6-5-4-2

بیشتر بدانیم:


درخت مولد گراف مانند G بزرگترین گراف درختی مانند T در G است که با افزودن یک یال از درخت بودن خارج می شود و واضح است اگر یک گراف n راس و m یال داشته باشد آن گاه درخت مولد n-1 یال داشته و باید m >= n-1 باشد.
تعداد درخت های مولد متمایز برای گراف کامل با n راس برابر است. این قضیه به قضیه کایلی معروف است.
تعداد درخت هایی که با n راس با درجات می توان ساخت برابر مقدار زیر است:

+ نوشته شده در  یکشنبه بیست و هفتم آذر 1384ساعت 19:28  توسط محمد خداپرستان  | 

اصل لانه کبوتر

اصل لانه کبوتر که به نام های «اصل جعبه کفش» یا «اصل کشویی دیر کله» مشهور است، اغلب برای پاسخ دادن به سوالات زیر مفید است:
«آیا اشیایی وجود دارند که درخاصیت مشخصی صدق کنند؟»
اگر اصل لانه کبوتر به طور موفقیت آمیزی به کار رود، تنها وجود چنین اشیایی را ثابت می کند و چیزی درباره روش یافتن اشیا و یا مشخص کردن تعداد آنها بیان نمی کند.

شکل ساده اصل لانه کبوتری

n کبوتر در k لانه قرار می گیرند. اگر n>k ،آنگاه تعدادی از لانه ها بیش از یک کبوتر خواهند داشت.

برهان

دلیل درستی این اصل، اغلب به برهان خلف ثابت می شود. زیرا، اگر اصل برقرار نباشد، آنگاه، هر لانه حداکثر یک کبوتر دارد و در این حالت، حداکثر کبوتر وجود خواهد داشت که با فرض و وجود کبوتر متناقص است. به دلیل بدیهی بودن استدلال به عنوان اصل پذیرفته می شود. دقت کنید که این اصل، اطلاعاتی درباره آن لانه هایی که حداقل دو کبوتر دارند ارائه نمی کند و تنها وجود چنین لانه هایی را تایید می کند.
در استفاده از این اصل در حل مسایل، باید تصمیم گرفت که نقش کبوتر ها و لانه ها چگونه تعبیر شوند.


img/daneshnameh_up/2/29/kab.gif


مثال

ده نفر به اتاقی وارد شده اند که نام کوچک آنها احمد، رضا و مهدی است و نام خانوادگی آنها محمدیان، رسولی و رضایی است. نشان دهید حداقل دو نفر از این ده نفر، نام و نام خانوادگی یکسانی دارند.
حل: تنها 9 امکان برای تولید اسامی متمایز وجود دارد. اگر افراد را به عنوان کبوتر اسامی را به منزله لانه کبوتر فرض کنیم، آنگاه بنا بر اصل لانه کبوتر، بعضی از اسامی (لانه ها) به حداقل دو نقر (کبوتر ها) نسبت داده می شوند.
حال مثال دیگری ذکر میکنیم:
15 نفر دریک میهمانی شرکت کرده اند. طبق این اصل حداقل دو نفر پیدا می شوند که در یک ماه به دنیا آمده اند.

+ نوشته شده در  یکشنبه بیست و هفتم آذر 1384ساعت 19:22  توسط محمد خداپرستان  | 

اعداد صحیح

اعداد صحیح شامل اعداد طبیعی مثبت و اعداد طبیعی منفی و عدد صفراست.
این اعداد را با Z نشان میدهند.این اعداد همانند اعداد طبیعی جزء مجموعه های شمارش پذیر نامتناهی است.شاخه ای از ریاضیات که به مطالعه در مورد ویژگیهای اعداد صحیح می پردازدنظریه اعداد نام دارد.
                                                           

ویژگیهای جبری

اعداد صحیح همانند اعداد طبیعی نسبت به اعمال جمع و ضرب بسته است،یعنی جمع و ضرب هر دو عدد صحیح، یک عدد صحیح است.
و چون اعداد صحیح شامل اعداد منفی و صفر می باشند بنابراین بر خلاف اعداد طبیعی نسبت به عمل تفریق نیز بسته اند.ولی چون حاصل تقسیم دو عدد صحیح بر هم ممکن است عددی صحیح نباشد،پس نمیتواند نسبت به عمل تقسیم بسته باشد.


جمع ضرب
بسته بودن a × b یک عدد صحیح است a+b یک عدد صحیح است
شرکت پذیری a + (b + c) =(a + b) + c a × (b × c)=(a × b) × c
جابجایی
a+b = b+a
a×b = b×a
عضو همانی
a+0 = a
a×1 = a
عضو خنثی
a+ (−a) = 0
توزیع پذیری
(a×(b + c) = (a × b)+(a × c

با توجه به خواص ذکر شده در جدول فوق مجموعه Z با عمل جمع تشکیل یک گروه آبلی را میدهد.ولی مجموعه Z با عمل ضرب تشکیل گروه نمیدهد،چون تمام اعداد صحیح دارای عضو معکوس در Z نیستند.
اگر چه عمل تقسیم روی مجموعه Z تعریف نشده است .ولی یکی از مهمترین خواص تقسیم به نام الگوریتم تقسیم در این مجموعه تعریف شده است.این الگوریتم به ما میگوید : دو عدد صحیح مانند a وb که b ≠ 0 در نظر میگیریم.در این صورت اعداد صحیح یکتا مانند q وr وجود دارند به طوریکه:
عدد صحیح q راخارج قسمت وr را باقیمانده مینامند. این روش ،اساس محاسبه بزرگترین مقسوم علیه مشترک میباشد.

خواص خوش ترتیبی

اعداد صحیح یک مجموعه مرتب است که دارای کران بالا و کران پایین نیست.



یک عدد صحیح مثبت است اگر بزرگتر از صفر باشدو منفی است اگر کوچکتر از صفر باشد. صفر عددی تعریف میشود که نه مثبت و نه منفی است.
از خوش ترتیب بودن اعداد صحیح می توان نتایج زیر را بدست آورد:

1.اگر و انگاه

2.اگر و آنگاه , و اگر آنگاه

+ نوشته شده در  یکشنبه بیست و هفتم آذر 1384ساعت 15:18  توسط محمد خداپرستان  | 

اعداد اول

اعداد اول

تعریف:عدد طبیعی p>1,pرا اول می نامند به شرطی که تنها مقسوم علیه های مثبت آن 1وp باشند. اگرعددی طبیعی وبزرگتر از 1اول نباشد مرکب است.

قضیه 1: تعداد اعداد اول نامتناهی است.

برهان: حکم را به روشی که منسوب به اقلیدس است اثبات می کنیم: فرض کنید تعداد اعداد اول متناهی و تعداد آنها n تا باشد . حال عدد M را که برابر حاصلضرب این اعداد به علاوه ی 1 را در نظر بگیرید. این عدد مقسوم علیهی غیر از آن n عدد دارد که با فرض در تناقض است.
(البته شایان ذکر است که این قضیه اثبات های گوناگونی دارد که ما ساده ترین آنها را انتخاب کردیم اگر مایلید می توانید اثبات های دیگر آن را بیاورید.)

قضیه 2:قضیه ی اساسی حساب: هر عدد طبیعی بزرگتر از 1 را به شکل حاصلضرب اعدادی اول نوشت.

قضیه 3: قضیه چپیشف:اگر n عددی طبیعی و بزرگتر از 2 باشد, حتما" بین n و 2n عدد اولی وجود دارد.

+ نوشته شده در  یکشنبه بیست و هفتم آذر 1384ساعت 15:7  توسط محمد خداپرستان  | 

بزرگترین مقسوم علیه مشترک (ب م م)

تعریف:

مقسوم علیه های مشترک میان دو عددa وb، اعدادی هستند که بتوانند هم a و هم b را بشمارند به عبارت ریاضی: اگر c مقسوم علیه مشترک دو عدد a و b باشد، آنگاه c|a و c|b .
مثلا مقسوم علیه های دو عدد 15 و30 را داریم:
{15={1,3,5,15}
30={1,2,3,5,6,10,15,30}
مقسوم علیه های مشترک میان این دو عدد عبارتند از:
مقسوم علیه های مشترک:{1,3,5,15}
بزرگترین مقسوم علیه مشترک میان دو عدد، عددی است که نسبت به تمام مقسوم علیه های مشترک میان دو عدد، بزرگترین باشد. به عبارت ریاضی: اگر d بزرگترین مقسوم علیه باشد، d|a و d|b و dبزرگتر از c باشد.
بزرگترین مقسوم علیه مشترک میان این دو عدد ، 15 است. که آن را به این صورت نمایش می دهند:
(15,30)=15
بزرگترین مقسوم علیه میان دو عدد را به اختصار به صورت " ب.م.م " می نویسند.
اگر ب.م.م دو عدد یک باشند ، آنگاه این دو عدد نسبت به هم اولند.مثلا دو عدد 13 و 8 هیچ مقسوم علیه مشترکی جز یک ندارند.

قضایای مربوط به بزرگترین مقسوم علیه مشترک:

قضیه1) این قضیه به قضیه بزو نیز معروف است. مطابق این قضیه مجموعه زیر مجموعه ای از مقسوم علیه های مشترک میان دو عدد a وb هستند:
S={m,n ε Z| am+bn>0}
نتیجه ای که از این قضیه می توان گرفت آن است که بزرگترین مقسوم علیه مشترک میان دو عدد aو b مطابق فرمول زیر است:
Am+bn=d.
قضیه 2) d بزرگترین مقسوم علیه مشترک دو عدد a و b است اگر و فقط اگر :
الف) d|a و d|b و ب) اگر c|a و c|b آنگاه c|d.

قضیه 3) اگر a|bc و (a,b)=1 یعنی نسبت به هم اول باشند، آنگاه a|c . این قضیه به لِم اقلیدوس نیز معروف است.
قضیه4) اگر P|ab (P یک عدد اول است)، آنگاه P|a یا P|b .
قضیه5) اگر c کوچکترین مضرب مشترک و d بزرگترین مقسوم علیه مشترک دو عدد a وb باشد آنگاه داریم:
Then: d*c=ab

لم های مربوط به بزرگترین مقسوم علیه های مشترک:

لم 1) بر اساس اصول بنیادی حساب، هر عدد مرکب را می توان به صورت حاصلضرب اعداد اول تجزیه کرد. ب.م.م میان دو عدد برابر با حاصلضرب اعداد اول مشترک میان آن دو عدد به توان عدد کمتر.
لم 2) ب.م.م دو عدد، هر مقسوم علیه مشترک میان دو عدد را می شمارد:

لم 3) اگر آنگاه :
لم 4) اگر
a|c & b|c , (a,b)=1 ===> ab|c


لم 5) اگر آنگاه


مثال مربوط به بزرگترین مقسوم علیه مشترک :


مثال1) اگر n عددی فرد باشد ثابت کنید که 24حاصلضرب سه عدد متوالی قبل و بعد از n را می شمرد:
24|(n-1)n(n+1)
جواب:
عدد سه، حاصلضرب سه عدد متوالی را می شمرد( اثبات آن به عهده خواننده است. راهنمایی : هر عددی را می توان به صورت :
A=3q+r 0≤r<3)

باید ثابت کنیم که حاصلضرب دو عدد زوج متوالی بر 8 تقسیمپذیر است:
:

then:
حاصلضرب دو عدد متوالی همواره بر 2 بخش پزیر است.پس:



then:

then:

then:


طبق لم 4 داریم:
 
+ نوشته شده در  یکشنبه بیست و هفتم آذر 1384ساعت 15:3  توسط محمد خداپرستان  |